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Abstract. In the Human Resource domain the accurate matching between job positions
and job applicants profiles is crucial for job seekers and recruiters. The use of recruitment
taxonomies have proven to be of significant advantage in the area by enabling semantic
matching and reasoning. Hence, the development of Knowledge Bases (KB) where curricula
vitae and job offers can be uploaded and queried in order to obtain the best matches by
both, applicants and recruiters is highly important. We introduce an approach to improve
matching of profiles, starting by expressing jobs and applicants profiles by filters representing
skills and competencies. Filters are used to calculate the similarity between concepts in the
subsumption hierarchy of a KB. This is enhanced by adding weights and aggregates on
filters. Moreover, we present an approach to evaluate over-qualification and introduce blow-
up operators that transform certain role relations in a KB where matching of filters can be
applied.

1 Introduction

In the Human Resources (HR) domain the accurate matching of job applicants to position de-
scriptions and vice versa is of central importance for employers and job seekers. Therefore, the
development of data or knowledge bases to which job descriptions and curricula vitae (CV) can be
uploaded and, which can be queried effectively and efficiently by both, employers and job seekers
to find best matching candidates for a given job profile and, best suitable job offers matching a
given applicant skill set, respectively, is of high importance.

It seems appropriate to consider knowledge bases for the representation and thus the storage of
the (job and CV) profiles, which in addition to pure storage would support the reasoning about
profiles and their classification. It seems reasonable to exploit the underlying lattice structure of
knowledge bases, i.e., the partial order on concepts representing skills. For instance, a skill such as
“knowledge of C” is more detailed than “programming knowledge”. Thus, defining profiles by fil-
ters, i.e., upward-closed sets of skills (e.g., if “knowledge of C” is in the profile, then “programming
knowledge” is in there as well) and using measures on such filters as the basis for the matching
seems adequate.

Concerning automatic matching of candidate profiles and job profiles, the commercial practice is
largely dominated by Boolean matching, i.e. for a requested profile it is merely checked how many of
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the requested terms are in the candidate profile [8][9] which amounts to simply counting the number
of elements in difference sets. This largely ignores similarity between skills, e.g. programming skills
in C++ or Java would be rated similar by a human expert.

Improving this primitive form of matching requires at least taking hierarchical dependencies be-
tween skill terms into account. For this various taxonomies have already been developed such as
DISCO competences [12], ISCO [13] and ISCED [14]. Taxonomies can then be refined by using
knowledge bases (ontologies) based on common description logics, which have been studied in
depth for more than 20 years [1]. However, sophisticated knowledge bases in the HR domain are
still rare, as building up a good, large knowledge base is a complex and time-consuming task,
though in principle this can be done as proven by experiences in many other application domains
[6].

Ontologies and more precisely description logics have been used as the main means for knowledge
representation for a long time [5]. The approach is basically to take a fraction of first-order logic, for
which implication is decidable. The common form adopted in description logics is to concentrate
on unary and binary predicates known as concepts and roles, and to permit a limited set of
constructors for concepts and roles. Then the terminological layer (TBox) is defined by axioms
usually expressing implication between concepts. In addition, an assertional layer (ABox) is defined
by instances of the TBox (or equivalently a ground theory) satisfying the axioms. The various
description logics differ mainly by their expressiveness. A prominent representative of the family
of description logics is SROIQ-D, which forms the formal basis of the web ontology language
OWL-2 [4], which is one of the more expressive description logics. As the aim of this work is
not focused on developing novel ideas for knowledge representation, but merely intends to use
knowledge representation as grounding technology for the semantic representation of job offers
and candidate CVs, it appears appropriate to fix SROIQ-D as the description logics to be used
in this work.

The lattice-like structure of concepts within a Knowledge Base provides basic characteristics to
determine the semantic similarity between concepts included in both, job descriptions and cur-
ricula vitae. The matching algorithms implemented to determine the semantic similarity between
concepts should allow to compare job descriptions and applicants profiles based on their semantics.
By comparing the concepts contained within a particular job description against the applicants
profile to that particular job through different categories, (i.e., competencies, education, skills) it
is possible to rank the candidates and select the best matches for the job.

The two profiles (job descriptions and applicants) are defined by means of filters. If ≤ denotes the
partial order of the lattice in the TBox, then a filter on the TBox is an upward-closed, non-empty
set of concepts. Filter-based matching on grounds of partially ordered sets are the starting point
of this work, this has been investigated previously [10]. The simple idea is that, for two filters F1

and F2 a matching value m(F1,F2) is computed as #(F1,F2)/ #F2 , i.e. by counting numbers
of elements in filters. Experiments based on DISCO already show that this simple filter-based
measure significantly improves the matching accuracy [7].

The goal of our research is to provide solid techniques to improve the matching process of job and
applicants profiles within the HR domain. We will show how adding weights on filters and categories
can significantly improve the quality of the matching results based on filter-based matching on
grounds of partially ordered sets. As part of the matching process, we also address the problem of
over-qualification that clearly cannot be captured solely by means of filters. Finally, we introduce
the novel concept of ‘blow-up” operators in order to extend the matching by integrating roles
in the TBox. The idea is to expand the TBox by using roles in order to define arbitrarily many
sub-concepts so that the original matching measures could again be applied.

In this approach, research on the knowledge base will be based on a subset of the description
logics SROIQ-D that is introduced in Section 2. An example of a TBox and how to manipulate
concepts in order to perform reasoning about it is presented in Section 3. We define the filter-
based matching in Section 4. The introduction of weights on filters is presented in Section 4.1



while weighted aggregates on categories of profiles is introduced in Section 4.2. In Section 4.3
the problem of over-qualification is addressed. And finally, “blow-up” operators is introduced in
Section 4.4.

2 Profile Matching in Description Logics

The representation of knowledge within taxonomies is used to represent the conceptual terminology
of a problem domain in a structured way in order to perform reasoning about it. In this section,
we introduce the syntax and the semantics of the language we use to represent the conceptual
knowledge of the Human Resources domain within this work. This language is a subset of the
Description Logics SROIQ-D.

The most elementary components of the logic are atomic concepts and atomic roles, denoted by
the letters C and R respectively. Atomic concepts denote sets of objects and atomic roles denote
binary relationships between atomic concepts. Note that the terms “concepts” and “sets” are
not synonyms. While a set is a collection of arbitrary elements of the universe, a concept is an
expression of the formal language of the description logics.Nominal names are names of individuals
in the description language. Concept descriptions can be build using concept constructors as
follows.

Definition 1. (Syntax of Concept Descriptions)
Concept description are defined by the following syntax rules:

C1, C2 −→ A | ⊤ | ⊥ |

¬C1 | negation of a concept C1( or, complement of C1)

C1 ⊔ C2 | union

C1 ⊓ C2 | intersection

C1 ⊑ C2 | subsumption

∃R.C1 | existential restriction

∀R.C1 | value restriction

≤ nR.C1 | cardinality restriction ≤

≥ nR.C1 | cardinality restriction ≥

= nR.C1 cardinality restriction =

where A denotes an atomic concept (also known as concept name), ⊤ and ⊥ denote the two
reserved atomic concepts top and bottom which represent the universe and empty set, respectively,
R denotes an atomic role (also known as role name), C1 and C2 denote concept descriptions and
n ∈ N.

The subsumption of the form C1 ⊑ C2 denotes that C1 is a subset of C2. This is considered the
basic reasoning service of the Knowledge Base. It is important to determine whether the concept
C2 is more general than the concept C1 when using subsumption. This is, whether the elements of
C1 always denote a subset of the elements of C2. Situations where, for instance, the programming
language C is a subset of Programming Languages within a taxonomy can be expressed by using
subsumption C ⊑ Programming Languages.

Role descriptions are build from atomic roles, atomic concepts and nominal names as follows.

Definition 2. (Syntax of Role Descriptions)
Let R1, R2 be role names and a nominal name a. Then every role name is a role description such
that inverse role R−

1 , roles involving individual names ∃R1.{a}, and role chain R1 ◦ R2 are also
role descriptions.



A role involving individuals of the form ∃R.{a} denotes the set of all objects that have a as a
“filler” of the role R. For example, ∃SpokenLanguage.{Russian} denotes that Russian is a spoken
language. Inverse roles R−

1 are use to describe passive constructions, i.e., a person owns something
(Owns.Person) can be expressed as something is owned by a person (Owns−.Thing). Two binary
relations can be composed to create a third relation. For instance, having a role R1 that relates
the element a1 to element a2 and role R2 that relates a2 with a3, we can relate a1 with a3 by using
role chain, this is R1 ◦R2. For example: by building a composition of the role hasSkill, that relates
elements of concept Person with elements of a given Competency, with the role hasProficiencyLevel,
that relates Competences with ProficiencyLevel, we have:

hasSkill ◦ hasProficiencyLevel

that produces the proficiency level of individuals with experience in a particular competency. We
can also define a role hasSkillExperience and express it as:

hasSkill ◦ hasProficiencyLevel ⊑ hasSkillExperience

Note that property chain can only occur in the left hand side of the subsumption. This is given by
the fact that hasSkillExperience is not a sufficient condition to say that someone hasProficiencyLevel
in a particular Competency. In general terms, n roles can be chained to form a new role R1◦· · ·◦Rn.

We introduce the concept of an interpretation in order to define the formal semantics of the
language. Concrete situations are modeled in logic through interpretations that associate specific
concept names to individuals of the universe. An interpretation I is a non-empty set ∆I called
the domain of the interpretation I. We sometimes use also D to denote ∆I . The interpretation
function assigns, to every atomic concept C a set ∆(C) ⊆ D and, to every role R a binary relation
∆(R) ⊆ D ×D.

Definition 3. (Semantic of the language)
Given an interpretation I, the atomic concepts top and bottom are interpreted as ∆(⊤) = D
and ∆(⊥) = ∅ and, the interpretation function can be extended to arbitrary concept and role
descriptions as follows:

∆(C1 ⊓ C2) = ∆(C1) ∩∆(C2),

∆(C1 ⊔C2) = ∆(C1) ∪∆(C2),

∆(¬C) = D\∆(C),

∆(C1 ⊑ C2) = ∆(C1) ⊆ ∆(C2),

∆(∀R.C) = {a ∈ D|∀b.(a, b) ∈ ∆(R) → b ∈ ∆(C)},

∆(∃R.C) = {a ∈ D|∃b.(a, b) ∈ ∆(R)},

∆(≤ nR.C) = {a ∈ D|#{b ∈ ∆(C)|(a, b) ∈ ∆(R)} ≤ n},

∆(≥ nR.C) = {a ∈ D|#{b ∈ ∆(C)|(a, b) ∈ ∆(R)} ≥ n},

∆(= nR.C) = {a ∈ D|#{b ∈ ∆(C)|(a, b) ∈ ∆(R)} = n},

∆(R.{a}) = {b ∈ D|(b, a) ∈ ∆(R)},

∆(R−) = ∆(R)−1 = {(b, a) ∈ D2|(a, b) ∈ ∆(R)},

∆(R1 ◦ · · · ◦Rn) ⊑ ∆(S) ≡ {(a0, a1) ∈ ∆(R1), . . . , (an−1, an) ∈ ∆(Rn)|(a0, an) ∈ ∆(S)}.

The number restrictions, ≤ nR.C, ≥ nR.C and, = nR.C denote, all elements that are related
through the role R to at least n, at most n or, exactly n elements of the universe, respectively,
where n ∈ N and # denotes the cardinality of the set.

New concepts can be introduced from previously defined concepts by using logical equivalence
C1 ≡ C2. For instance, FunctionalProgrammer ≡ Lisp ⊔ Haskell introduce the concept Functional-

Programmer denoting all individuals that have experience programming in Lisp or Haskell, or both



. In this context, a concept name occurring in the left hand side of a concept definition of the form
C1 ≡ C2 is called a defined concept.

We have introduced in this section a subset of SROIQ-D that is sufficient for this work. Although,
for a comprehensive detail of description logics we recommend [2].

3 Representation of Profile Knowledge

Knowledge representation based on description logics is comprised by two main components, the
Terminological layer or TBox for short, and the Assertional layer, or ABox. The TBox contains the
terminology of the domain. This is the general knowledge description about the problem domain.
The ABox contains knowledge in extensional form, describing characteristics of a particular domain
by specifying it through individuals.

Within the TBox, it is possible to describe inclusion relation between concepts by using subsump-
tion. Hence, we can specify, for instance that, Computing is part of Competences and, Programming

is part of Computing and, different Programming Languages are included within Programming such
that:

LISP ⊑ Programming Languages ⊑ Programming ⊑ Computing ⊑ Competences

Java ⊑ Programming Languages ⊑ Programming ⊑ Computing ⊑ Competences

...

this gives rise to a partial order on the elements of the Knowledge Base. Given the nature of
subsumption of concepts within Knowledge Bases, TBoxes are lattice-like structures. This is purely
determined by the subsumption relationship between the concepts that determine a partially
ordered set of elements. In this partially ordered set, the existence of the greatest lower bound
(LISP, Java) is trivial which also implies the existence of the least upper bound (Competences).

In ABoxes, we specify properties about individuals characterized under a specific situation in terms
of concepts and roles. Some of the concept and role atoms in the ABox may be defined names
of the TBox. Thus, within an ABox, we introduce individuals by giving them names (a1, a2, . . . ),
and we assert their properties trough concepts C and roles R. This is, concept assertions C(a1),
denote that a1 belongs to the interpretation of C and; role assertions R(a1, a2), denote that a1 is
a filler of the role R for a2.

As an example, we consider the TBox in Figure 1 corresponding to the Competences sub-lattice
in Figure 2 that represent a small set of Programming Languages. Note that, we have refined the
relation between the concepts in order to reflect the conceptual influence between the different
programming languages. Note also that Programming Languages (PL) is not the least upper bound
in Figure 2. For convenience, we have suppressed the upper part of the subsumption structure of
the sub-lattice (Programming Languages ⊑ Programming ⊑ Computing ⊑ Competences).

In this TBox, atomic concepts are not defined as such but, they are used in concept descriptions
and defined concepts. Concept descriptions describe mainly the subsumption structure of the
atomic concepts while defined concepts describe the following characteristics of programming
languages. The set of programming languages with a C-like structure, this is C-Family; the set of all
programming languages but Java, NoJava; Programmer defines every individual that has experience
programming with at least one programming language and Polyglot describes all individuals that
have experience in programming in two or more programming languages. There is only one role
here, hasSkill denoting all objects having some experience in certain domain.

Under a given interpretation I with individuals a1, a2 ∈ D, we can for instance express the queries
C0 and C1 below. C0 expresses that the individual a1 has some experience in programming in
Haskell while C1 states that a1 is a programmer in at least one of the C-Family languages but



Concept Description

Imperative ⊔ Object Oriented ⊔ Unix Shell ⊔ Functional ⊑ Programming Languages

C# ⊑ C++ ⊑ C ⊑ Imperative

C++ ⊑ Object Oriented

C++ ⊑ FORTRAN ⊑ Imperative

Defined Concepts

C-Family ≡ C# ⊔ C++ ⊔ C ⊔ Java ⊔ Perl

NoJava ≡ ∀hasSkill.¬Java

Programmer ≡ ∃hasSkill.Ci

Polyglot ≡ >2∃hasSkill.Ci

Roles

hasSkill

Fig. 1. Programming Languages TBox

Java:

C0 :={(a1, a2) ∈ ∆(hasSkill) ∧ a2 ∈ ∆(Haskell)}

C1 :={(a1, a2) ∈ ∆(hasSkill) ∧ a2 ∈ ∆(∃C-Family) ∧ a2 ∈ ∆(NoJava)}

If a1 satisfies C0 ⊔ C1 and given that ∆(C-Family) is the set composed by {C#, C++, C, Java,
Perl}, we can deduce other characteristics of a1 in this ABox:

a1 ∈ ∆(Programmer) a1is a programmer

a1 ∈ ∆(Polyglot) a1is a polyglot programmer

a1 ∈ ∆(Imperative) a1has knowledge in Imperative Paradigm

a1 ∈ ∆(Functional) a1has knowledge in Functional Paradigm

a1 ∈ ∆(Objec Oriented) a1has knowledge in Object Oriented Paradigm

4 Matching Theory

In the Human Resource sector, the data exchange between employers and job applicants is based
on a set of shared vocabularies or taxonomies describing relevant terms within the domain, i.e.:
competencies, education, skills, etc. Knowledge Bases act as repository-like structures for the
domain specific knowledge. The lattice-like structure of concepts within a Knowledge Base provides
basic characteristics to determine the semantic similarity between concepts included within the
two profiles: job descriptions and curricula vitae. We distinguish the two profiles involved by
identifying them as, the required competencies to all characteristics included in a job description
and, the given competencies to all characteristics of an applicant skill sets contained in a CV. The
two profiles are defined by means of filters. If ≤ denotes the partial order of the lattice in the
TBox, then a filter on the TBox is an upward-closed, non-empty set of concepts. More precisely,
we can assume that each profile in the knowledge base representing either a candidate CV or a job
offer, is defined by a set of (given or required) skills, each modelled as subconcepts of a concept
“skill”. Thus, it is possible to concentrate on filters on the sub-lattice of sub-concepts of “skill”.

An example of filters taken from Figure 2 could be for instance, “someone with experience pro-
gramming in C#”. In this example, the upward-closed set of concepts is defined as:

{C++ ⊑ Object Oriented ⊑ PL ⊑ Programming ⊑ Computing ⊑ Competences}



Fig. 2. Programming Languages sub-lattice

For a given job position (and applicant profile) it is expected to find many different filters that
represent subsets of the applicant profiles and the job description. For instance:

F1 = a required candidate that holds a Bachelor in Mathematics,

F2 = a candidate with 5 years of experience teaching mathematics in primary schools,

F3 = good level of English and German in both, speaking and writing,
...

Fn = a resident of Berlin, Germany.

Note that, every job offer (and also applicants profiles) is comprised by a number of categories
(Competences, Languages, Education, Skills, Social Skills, etc.). In turns, every category is ex-
pected to consist of at least one filter. For instance, for a given job advert it could be requested
that candidates comply with Fj = knowledge of Java, Fl = knowledge of Linux, Fdb = knowledge
of database programming, etc. within the Competency category.

The filtered-based matching on partially ordered sets has been investigated in [10]. The basic idea
is defined as follows:

Definition 4. Let F1 and F2 be filters in the given profile and in the required profile, respectively.
The matching value m(F1,F2) for F1 and F2 is computed as:

m(F1,F2) =
#(F1 ∩ F2)

#F2

where #F2 and #(F1 ∩ F2) denote the cardinality of F2 and F1 ∩ F2, respectively.

Note that the matching values are normalized in the range of [0, 1] and satisfy the following
Bayesian type rule:

m(F1,F2) ·#F2 = m(F2,F1) ·#F1.

An example taken from Figure 2 could be, a particular job description looking for applicants
with experience in programming in C# and, a particular applicant profile claiming to have some
experience programming in Java. The two filters are:



F1 = experience in Java F1 := {(a1, b1) ∈ ∆(hasSkill) ∧b1 ∈ ∆(Java)}

F2 = experience in C# F2 := {(a2, b2) ∈ ∆(hasSkill) ∧b2 ∈ ∆(C#)}

The simplest algorithm would take the shortest distance between the two concepts from the least
upper concept in the sub-lattice and calculate the distance between the two concepts (Java and
C++) by counting cardinality of concepts.

F1 = Java ⊑ C++ ⊑ Object Oriented ⊑ PL ⊑ Programming ⊑ Computing ⊑ Competences

F2 = C# ⊑ C++ ⊑ Object Oriented ⊑ PL ⊑ Programming ⊑ Computing ⊑ Competences

In this particular example, there is a measure of 7 for F1 and a measure of 7 for F2 as well, giving
by the fact that the two elements (Java and C#) are siblings. By siblings we express the idea of a
set of elements {i, j, x, y} in a given lattice L where i < x, y < j assuming < is the partial ordering
of the elements in L . In this particular case, it is C++ < Java and C++ < C#. Although, it is
the elements in common between the two filters that counts in here. Therefore, the matchability
measurement of the two filters is 0, 86 calculated as:

m(F1,F2) =
6

7

where, 6 is the number of common elements between F1 and F2, and 7 is the total number of
elements in F2. In the context of the TBox in Figure 2 and, given the fact that matching on filters
ranges between [0,1], we can say that having some experience in Java results in a relatively high
score for the required experience in C#.

We introduce in the following sub-sections the main contribution of our research in this work.
The main goal of this research is to provide an improvement on the matching process of job and
applicants profiles within the HR domain. We will show how including weights can significantly
improve the quality of the matching results based on filter-based matching on grounds of partially
ordered sets. The introduction of a measure that improves matching on filters is detailed in Section
4.1. And aggregates on categories of profiles is introduced in Section 4.2 . We have also researched
how to address over-qualification, as part of the matching process that, clearly cannot be captured
solely by means of filters. This is introduced in Section 4.3. Finally, in Section 4.4 we introduce
the novel concept of ‘blow-up” operators. These operators allow us to extend the matching by
integrating roles in the TBox. The idea is to expand the TBox by using roles to define arbitrarily
many sub-concepts so that the original matching measures could again be applied.

4.1 Aggregates on Filters

A number of algorithms have been implemented to calculate the similarity of concepts between
job descriptions and applicants profiles. It has already been shown in [10] that the idea of filter-
based matching, as described in Section 4, significantly improves accuracy in comparison to simply
taking differences of skill sets. A new matching measurement is introduced here, achieved by adding
weights to the elements of the sub-lattice.

Definition 5. Let F1 and F2 be filters in the given profile and in the required profile, respectively.
Let F1 ∩F2 denote the set of concepts that appear in both F1 and F2. Let wi and wj be the weight
associated to every concept Ci in F1 ∩F2 and Cj in F2, respectively. Then the aggregate on filters
mw(F1,F2) is defined:

mw(F1,F2) =

∑
Ci∈F1∩F2

wi∑
Cj∈F2

wj

where i, j ∈ N.



By adding weights to the concepts of the sub-lattice structure, we are not only improving the
matching but also, providing the possibility of adding a ranking of importance to every element
in the underlying sub-lattice for a required aspect within a job profile. In this way, one could
emphasize the search on the generic areas of required competencies. For instance, if searching for
someone with experience in Object Oriented is more important than someone with experience in a
specific Programming Language, then aggregates could be distributed as follows:

C++[0,10],Object Oriented[0,60],PL[0,10],Programming[0,10],Computing[0,05],Competences[0,05]

Or one could instead emphasize the search in more specific required competencies. For instance,
if an experienced person in C++ is absolutely relevant to the position, we could write,

C++[0,60],Object Oriented[0,10],PL[0,10],Programming[0,10],Computing[0,05],Competences[0,05]

Either way, the distribution of aggregates through the elements of the underlying sub-lattice is
normalized to be within the range [0,1].

4.2 Aggregates on Categories

Ranking the top candidates for a particular job position can be challenging in situations where,
for example, a number of the top candidates result with the same matching measurement. The
Fitness column in Table 1 shows an example where three different candidates have a final score
of 0,5 as a result of the 4 analyzed categories (Competences, Languages, Education, Skills). To
overcome these situations, adding aggregates on the categories of the evaluated job profile has
been considered. This is a normalized adjustable measure defined within [0, 1], intends to provide
a more granular set of results.

Consider the aggregates on filters mw(F1,F2) as in Definition 5 and, consider as well the set of
filters a given category is composed by, i.e., Category = {F1,F2, . . . ,Fx}. The score of a given

category within a given profile, is calculated by m̄w =
∑x

l=1

mwl
(F1,F2)

x
. Then, the aggregates on

categories is defined as follows.

Definition 6. Let m̄wj be the score per category j and, wj be the weights associated to every
category within a profile. We define the aggregates on categories mc as follows:

mc =

m∑

j=1

m̄wj ∗ wj

where m ∈ N denotes the total number of categories.

Table 1. matching measures with same fitness

Competences Languages Education Skills Fitness

Candidate 1 1 0 1 0 0,5

Candidate 2 0,5 0,5 0,5 0,5 0,5

Candidate 3 0,8 0,2 0,2 0,8 0,5

As an example, we apply different weights to the categories in Table 1, for instance: 0,5 to Compe-
tences, 0,2 to Languages, 0,1 to Education and 0,2 to Skills. This results in a completely different
set of scores, that is clearly less problematic to evaluate during the ranking of the candidates, as
shown in Table 2.



Table 2. ranking candidates with aggregates on categories

Competences

(50%)

Languages

(20%)

Education

(10%)

Skills

(20%)
Fitness

Candidate 1 1 0 1 0 0,6

Candidate 2 0,5 0,5 0,5 0,5 0,5

Candidate 3 0,8 0,2 0,2 0,8 0,62

This approach provides the experts in the HR domain, with the option of ranking the different
categories in order of importance. One may guess that Skills and Competences could almost always
be the most important categories although, this is subject to every particular case where advise
from the experts in the area is required.

4.3 Over-qualification in Profile Matching

An over-qualified applicant for a given job offer is defined as a person that is skilled or educated
beyond what it is required to conform to a given advertised position. It appears natural to approach
profile matching by the dual notion of [fitness, over-qualification] as part of a person skill set
such that, fitness is calculated by means of aggregates on filters, as in Definition 4.1 and over-
qualification is calculated by means of cardinality of filters as defined in Definition 4. Therefore,
we would look for the maximality of the fitness scores and the minimality of the over-qualification
scores of candidates during the ranking process.

It seems obvious to note that over-qualification is only evaluated in cases where fitness > 0, this
is, if m(F1,F2) > 0, as there is no point on doing so otherwise.

Definition 7. Given two filters F1 representing a candidate profile and F2, representing a job
profile, over-qualification is calculated as follows:

O(F2,F1) =
#(F2 ∩ F1)

#F1

where O(F2,F1) ∈ [0, 1].

Note that, over-qualification is calculated by counting the number of elements on filters as in
Definition 4 although, filters are taken in the opposite direction than on matching. Such that, it
measures the characteristics of the job profile against the characteristics of the applicants profile.
This is, skills, academic records, competencies present in the applicants profile that are not required
in the job description.

Consider the following example where:

F1 := {(a1, b1) ∈ ∆(hasSkill) ∧ b1 ∈ ∆(Java) ∧ (a1, c1) ∈ ∆(hasSkill) ∧ c1 ∈ ∆(Haskell)}

F2 := {(a2, b2) ∈ ∆(hasSkill) ∧ b2 ∈ ∆(C#)}

We have calculated the matching measure between Java and C# in Section 4 already where,
m(F1,F2) = 0, 86. Given that Haskell is clearly not part of the job profile filter, we calculate
over-qualification of Haskell in terms of C#. This results in a measure of 0, 86 as well, given that
O(F2,F1) = 6

7 . Then, the measurement [fitness, over-qualification] is [0,86; 0,86]. We could say
that this individual is equally (and highly) competent and over-qualified for the position as a
programmer in C#.



4.4 Blow-up Operators

In order to take full benefit of the knowledge based representation of profiles, we define TBox
transformations by means of operators that remove roles and instead, enlarge the knowledge base
by many new sub-concepts. We call such operators blow-up operators, because the removal of
a single rule may lead to many new concepts, even infinitely many. However, for the sake of
computability, the filters should remain finite. The idea in here is to extend the approach of
matching by integrating new roles in the TBox. This is basically to define operators that expand
the TBox by using roles in order to define arbitrarily many new sub-concepts so that the original
measures of matching, as defined in Section 4, could again be applied. We define a blow-up operator
as follows:

Definition 8. Let C and C
′

be two concept names and let R be a role name that relates elements
of C with elements of C

′

. Let I be an interpretation such that for a given two nominal names a
and b, b ∈ ∆(C

′

) and {a ∈ ∆(C)|(a, b) ∈ ∆(R)}. Then, Blow-up operator is defined as:

blow-up(C, {R,C
′

}) ≡ C ⊓ ∃R.C
′

where an instance b of C
′

defines sub-concepts of C such that, the R-values are restricted to b,
then R(a, b) ∈ ∆(R).

By extending this definition, it is easier to note the new created concepts, denoted by C̄i:

C̄1 := blow-up(C, {R,C
′

1})

C̄2 := blow-up(C, {R,C
′

2})

...

C̄n := blow-up(C, {R,C
′

n})

Note that, an order on the instances of C
′

defines a subsumption on the elements C̄i. This is, for
every i, j ≤ n it is C̄i ⊑ C̄j if and only if i ≤ j. The generic definition is:

Blow-upn(C, {(R,C1), . . . , (R,Cn)}) ≡
l

1≤i≤n

blow-up(C, {R,Ci})

Consider an example where people have certain years of experience working with programming
languages in general. This can be thought as a relation between two concepts: Years of Experience
and Programming Languages, where the two concepts are related through the role hasExperience,
as shown in Figure 3.

hasExperience
Experience 

Programming 

Languages

Years Of 

Fig. 3. Role hasExperience between Programming Languages and Years of Experience

By applying blow-up operators, the role hasExperience is removed and instead, creates many sub-
concepts of Programming Languages with every instance of Years of Experience. It is important
to note that, this applies only to every instance of Programming Languages where the value in
hasExperience is restricted to Years of Experience. Thereby, after applying blow-up operators, the
role in Figure 3 is expanded, as shown in Figure 4, where C++ is an instance of Programming



C++

C++ 1ye

C++ 2ye

C++ nye

1ye

2ye

nye

Programming 

Languages

Years of 

Experience

Fig. 4. Role hasExperience blowed-up with C++ and Years of Experience

Languages, and {1ye, 2ye, . . . } are instances of Years of Experience. Where 1ye expresses “1 year of
experience”, 2ye = “2 years of experience”, etc.

Note that, an order on the instances of Years of Experience gives rise to subsumption between
the so-defined sub-concepts of Programming Languages, i.e., “C++ with n year of experience” ⊑
“C++ with n-1 years of experience“ ⊑ · · · ⊑ “C++ with 2 years of experience“ ⊑ “C++ with 1
year of experience“. In consequence, integrating matching measurements as explained in Sections
4 with blow-up operators seems plausible. Consider an example taken from Figure 2 where, F1 =
a given competency in C++ with 2ye and F2 = a required competency in C++ with 3ye expressed
as follows:

F1 := {(a1, b1) ∈ ∆(hasSkill) ∧ b1 ∈ ∆(C++) ∧ (b1, c1) ∈ ∆(hasExperience) ∧ c1 ∈ ∆(2ye)}

F2 := {(a2, b2) ∈ ∆(hasSkill) ∧ b2 ∈ ∆(C++) ∧ (b2, c2) ∈ ∆(hasExperience) ∧ c2 ∈ ∆(3ye)}

The basic matching measurement is m(F1,F2) = 1 given that m(F1,F2) = 6
6 . While, the basic

matching measurement applied to the blow-up of years of experience results as follows:

#(blow-up(C++, {hasExperience, 2ye}) ∩ blow-up(C++, {hasExperience, 3ye}))

#blow-up(C++, {hasExperience, 3ye})
=

4

5

It seems clear how the use of blow-up operators to the role hasExperience in Figure 3 influences
the result of the original matching measure of 1. We believe blow-up operators is a relevant
improvement on how matching of profiles is performed nowadays in relation to this complex roles
such as “years of experience” on skills and competencies.

Note that a blow-up is performed up-to the level of the required profile. Therefore blow-up operator
is defined within the range [0, 1].

Blow-up operators allow us to expand the knowledge base, and more precisely the TBox, in such a
way, that allows the filter-based matching measures to remain unchanged. Blow-up operators are
not intended to be part of the TBox itself. Nevertheless, they extend concepts within the TBox
in a lattice-like structure by blowing-up the role R. Blow-up operators are intended to be applied
to a wider range of circumstances, i.e., years of experience in competences, proficiency level of
skills, versioning, etc. Therefore, blowing-up all these possibilities and possibly combining them
all together within a given TBox would be rather slow. Then, calculating blow-up operators out
of the TBox is a better and more efficient approach.



4.5 Conclusion and Further Work

In this approach we have shown a number of improvements to the matching process of profiles
between job offers and applicants profiles within the HR domain. Starting from a previous work
(Popov-Jebelean, 2013), we have introduced an improvement to the matching of filters by adding
aggregates on filters and also on the categories of profiles. We have also addressed the problem of
over-qualification with the dual measure of [fitness, over-qualification] and introduced the novel
idea of blow-up operators by integrating roles in the TBox.

Further research to this approach will be focus on the investigation of methods for the learning of
matching relations from large ABoxes. With respect to the enrichment of knowledge bases several
approaches for ontology learning have been investigated [3], [11]. Also attempts to exploit Formal
Concept Analysis have been undertaken [7].
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