Knowledge and Information Systems

Evaluation of Two Heuristic Approaches
to Solve the Ontology Meta-Matching
Problem

Jorge Martinez-Gil and José F. Aldana-Montes

Department of Computer Languages and Computing Sciences, University of Mélaga, Spain

Abstract. Nowadays many techniques and tools are available for addressing the on-
tology matching problem, however, the complex nature of this problem causes existing
solutions to be unsatisfactory. This work aims to shed some light on a more flexible way
of matching ontologies: Ontology Meta-Matching which is a set of techniques to con-
figure optimum ontology matching functions. In this sense, we propose two approaches
to automatically solve the Ontology Meta-Matching problem. The first one is called
MaSiMe, which is based on a greedy strategy to compute efficiently the parameters
which configure a composite matching algorithm. The second approach is called GOAL
and is based on a Genetic Algorithm which scales better for a large number of atomic
matching algorithms in the composite algorithm and is able to optimize the results of
the matching process.

Keywords: Ontology Meta-Matching, Knowledge Management, Information Integra-
tion

1. Introduction

The Semantic Web is a promising paradigm for the Web in which the semantics of
information is defined, making it possible for the Web to understand and satisfy
all of the requests from people and machines using the web resources. Therefore,
most authors consider the Web as an universal medium for data, information,
and knowledge exchange (Berners-Lee et al, 2001).

In relation to knowledge, it is very important the notion of ontology as a
form of representation about a particular universe of discourse or some part of
it. Ontology matching is fundamental so that appropriate knowledge exchange

Received Dec 12, 2008
Revised Jul 21, 2009
Accepted Nov 08, 2009

2 Martinez-Gil and Aldana-Montes

in this extension of the Web can be possible; it allows organizations to model
their knowledge without having to stick to a specific standard. In fact, there are
two good reasons why most organizations are not interested in working with a
standard for modeling their own knowledge: (a) it is very difficult or expensive
for many organizations to reach agreement about a common standard, and (b)
those standards which do exist often do not fit in with the specific needs of all
the participants.

Although automatic matching is perhaps the most appropriate way to align
ontologies, it has the disadvantage that finding good similarity functions is, data,
context, and sometimes even user-dependent, and needs to be reconsidered every
time new data or a new task is inspected (Kiefer et al, 2007). Moreover, dealing
with natural language often leads to a significant error rate. This last statement
is very important for those authors who do not easily allow interpretation of the
intellectual nature of a given concept by a machine (Doerr, 2001). However, they
admit that automatic methods are far cheaper and can detect relations of which
humans are unaware. We are convinced that the future lies in the coordinated
combination of intellectual and automatic methods. But in this work, we are
going to try to find customized similarity functions (CSF) in order to obtain the
best ontology alignment for each situation.

On the other hand, functions for calculating alignments can be divided into
similarity measures and distance measures.

— A similarity measure is a function that associates a numeric value with a pair
of objects, based on the idea that a higher value indicates greater similarity.

— A distance measure is a function that associates a non-negative numeric value
with a pair of objects, based on the idea that a short distance means greater
similarity. Distance measures usually satisfy the mathematical axioms of a
metric.

In practice, there are long-standing psychological objections to the axioms
used to define a distance metric. For example, a metric will always give the same
distance from a to b as from b to a, but in practice we are more likely to say
that a child resembles their parent than to say that a parent resembles their
child (Widdows, 2004). Similarity measures, however, give us an idea about the
probability of compared objects being the same (Pfitzner et al, 2009), but with-
out falling into the psychological objections of a metric. So from our point of
view, working with similarity measures is more appropriate for detecting corre-
spondences between different ontologies belonging to same domain. In this sense,
Ontology Meta-Matching could be considered a technique that automatically se-
lects the appropriate similarity measures and their associated weights in the case
where similarity measures need to be composed. It tries to avoid the research
work which depends heavily on human thought. Ontology Meta-Matching can
be performed in several ways. We have designed one greedy and one genetic al-
gorithm. The greedy algorithm allows us to obtain reasonable results with a low
computational cost and, the advantages inherent to the second strategy are its
great accuracy and scalability. The main contributions of this work are:

— An introduction to the problem of Ontology Meta-Matching.
— A greedy algorithm for solving the problem automatically and efficiently.
— A genetic algorithm for optimizing the solutions to the problem.

— An empirical evaluation of the proposed algorithms and a discussion of their
advantages.

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 3

The remainder of this article is organized as follows. Section 2 describes the
problem statement related to the Ontology Meta-Matching problem, describes
the preliminary definitions and properties that are necessary for understanding
our proposal and and compares our proposal to the other approaches that try to
solve the problem. Section 3 discusses a greedy strategy and a way to effectively
compute it. Section 4 describes a genetic strategy and a way to implement it.
Section 5 shows the empirical data that we have obtained from some experiments,
including results obtained from a standard benchmark for ontology matching.
Section 6 includes the related work section which compares our work with other
approaches. And finally, in Section 7 the conclusions are discussed.

2. Problem Statement

The process of aligning ontologies can be expressed as a function f where given
a pair of ontologies O and O’, an input alignment A, a set of parameters p and
a set of resources r, an alignment 'A is returned::

A'= f(0,0",A,p,r)

Where A’ is a set of mappings. A mappingﬂ is an expression that can be
written in the form (id, e, e’, n, R). Where id is an unique identifier for the map-
ping, e and €’ are entities belonging to different ontologies, R is the relation of
correspondence and n is a real number between 0 and 1, which represents the
mathematical probability that R may be true (Ehrig, 2007). The entities that
can be related are the concepts, roles, rules and, even axioms of the ontologies.

However, experience tells us that finding f is far from being trivial. As we
commented earlier, the heterogeneity and ambiguity of data description makes it
unavoidable that optimal mappings for many pairs of entities will be considered
as "best mappings” by none of the existing ontology matching algorithms which
are usually called matchers. For this reason, it is necessary to compose these
simple matchers. Figure 1 shows an example of an user-dependent alignment
between ontologies, because this alignment is not valid for all the countries in
the world.

Composite matchers are an aggregation of simple matching algorithms, usu-
ally called matchers. Matchers exploit a wide range of information, such as on-
tology characteristics (i.e. metadata, such as element names, data types, and
structural properties), characteristics of data instances, as well as background
knowledge from dictionaries and thesauri.

1. String normalization. This consists of methods such as removing unneces-
sary words or symbols from the entity names. Moreover, they can be used for
detecting plural nouns or to take into account common prefixes or suffixes as
well as other natural language features.

2. String similarity. Text similarity is a string based method for identifying
similar entity names. For example, it may be used to identify identical concepts
of two ontologies if they have a similar name. The reader can see (Navarro,
2001) for a classical approach to the problem or (Woon and Wong, 2009) for
a more modern point of view.

L Output tuples from an alignment are called mappings. But using ontology alignments for

query purposes is called ontology mapping.

4 Martinez-Gil and Aldana-Montes

Class
«+——subClassOf

I
subClassOf: Staff

subClassOf subClassOf

Class Class Class Class
Associate Assistant -| Assistant
Professor
Professor Professor ! Researcher
T T !
Lo A S
Class
University
Grades

subClassOf subClassOf

Class Class
Post
' __ Bachelor Graduate [~~~

subClassOf subClassOf

Class Class

Master PhD

Fig. 1. Example of an user-dependent alignment. Most probably none of the two
ontology owners will consider it optimal for them

3. Data Type Comparison. These methods compare the data type of the
ontology elements. Similar concept attributes are logically expected to have
the same data type.

4. Linguistic methods. This involves the inclusion of linguistic resources such
as lexicons and thesauri to identify possible similarities. Some of most popular
linguistic method is to use WordNet (Wordnet, 2008) to identify some kinds of
relationships between entities or background knowledge from the web in gen-
eral (Rosenfeld and Feldman, 2009) or from more specific sources as Wikipedia
as the work presented in (Wang et al, 2009).

5. Inheritance analysis. These kinds of methods take into account the inheri-
tance between concepts to identify relationships. The most popular method is
the is-a analysis that tries to identify subsumptions between concepts.

6. Data analysis. These kinds of methods are based on the rule: If two concepts
have the same instances, they will probably be similar. Sometimes, it is possible
to identify the meaning of an upper level entity by looking at a lower level one.
For example, if instances contain a string such as years old, it probably belongs
to an attribute called age.

7. Graph-Mapping. This consists of identifying similar graph structures in two
ontologies. These methods use known graph algorithms to do so. Most of times
this involves computing and comparing paths, adjacent nodes and taxonomy
leaves. For example (Maguitman et al, 2006).

8. Statistical analysis. It consists of the extraction of keywords and textual de-

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 5

scriptions for detecting the meaning of the entities in relation to other entities.
For example (Martinez-Gil et al, 2008).

9. Taxonomy analysis. It tries to identify similar concepts by looking at their
related concepts. The main idea is that two concepts belonging to different
ontologies have a certain degree of probability of being similar if they have the
same neighbours.

10. Semantic methods According to (Euzenat and Shvaiko, 2007), semantic
algorithms handle the input based on its semantic interpretation. One supposes
that if two entities are the same, then they share the same interpretation. Thus,
these are well grounded deductive methods. Most outstanding approaches are
description logics reasoning techniques.

However, choosing from among this variety of algorithms is far from being
a trivial task. Firstly, more and more are constantly being developed, and this
diversity in itself complicates the choice of the most appropriate for a given
application domain. Secondly, recent empirical analysis shows that there is no
(and may never be) single dominant matcher that performs best, regardless of
the data model and application domain (Kiefer et al, 2007). In fact, due to
effectively unlimited heterogeneity and the ambiguity of data description used
in the ontology development, it seems unavoidable that optimal mappings for
many pairs of correspondences will be considered as best mappings by none of
the existing matchers. For this reason, it is necessary to use composite matchers.
Using composite matchers has the advantage that all matching algorithms are
considered as black boxes in order to select the most appropriates. In this way,
automatically methods are able to tighten or loosen the matching function au-
tomatically if necessary. This means that it is not necessary for users to decide
which algorithms have to be used.

The main idea of composite matchers is to combine similarity values predicted
by multiple similarity measures to determine correspondences between ontology
elements. The most outstanding proposals in this area are COMA (Do and Rahm,
2002), COMA++ (Amueller et al, 2005), QuickMig (Drumm et al, 2007) and
OntoBuilder (Gal et al, 2005), but these proposals use weights determined by an
expert. Meta-Matching does not use weights from an expert, but selects those
that would solve the problem according to a training benchmark, which is a set
of ontologies that have been previously aligned by an expert.

2.1. Technical Background

Definition 1 (Similarity Measure). A similarity measure sm is a function
sm: py X pg — R that associates the similarity of two input terms py and po to
a similarity score sc € R in the range [0, 1]. This definition has been taken from
(Kiefer et al, 2007)

Moreover, we need to know that a similarity score of 0 stands for complete in-
equality and 1 for equality of the input terms pp and pus.

Definition 2 (Customizable Similarity Measure). A Customizable Similar-
ity Measure is a similarity measure that can be parametrized. Example 1 shows
a function of this type.

6 Martinez-Gil and Aldana-Montes

Example 1 (Weighted Similarity Measure). Let A be a vector of similarity
measures and w a weight vector and let O1, Oy be two input ontologies, then we
can define wsm as a weighted similarity measure in the following form:

wsm(01,02) =z € [0,1] € R — 3 <14_1', 711'> cx=maz(3Z) Ai - w;)

with the following restriction Zi? w; < K
But from an engineering point of view, this function leads to an optimization
problem for calculating the weight vector, because the number of candidates
from the solution space (in this case an arbitrary continuous and real interval) is
infinite. For this reason, a brute force strategy would clearly be inefficient. It is
necessary to look for better computational mechanisms that allow the problem
of computing weighted measures to be solved more efficiently.

Definition 3 (Ontology Matching). An ontology matching om is a function

om : 01 x Oy 25 A that associates two input ontologies O1 and Oy to an align-
ment A using a similarity measure (or a customizable similarity measure).

Definition 4 (Ontology Alignment). An ontology alignment oa is a set
{t, MD}. t is a set of tuples in the form {(id,e,e’,n, R)}. Where id is a unique
identifier, e and €' are entities belonging to two different ontologies, R is the
relation of correspondence between these entities and n is a real number between
0 and 1 representing the mathematical probability that R may be true. The en-
tities than can be related are the concepts, roles, rules and, even azxioms of the
ontologies. On the other hand, MD is some metadata related to the matching
process for statistical purposes.

Definition 5 (Alignment Evaluation). An alignment evaluation ae is a func-
tion ae : A X Ar — precision € R € [0,1] x recall € R € [0,1] that associates
an alignment A and a reference alignment Ag to three real numbers stating the
precision, recall and fall-out of A in relation to Ag.

Definition 6 (Meta-Matching Function). A Meta-Matching Function mm f
is a function mmf : SC +— R that defines how previously calculated similarity
score sc; € SC. The result is an optimized similarity score sc, € R. We call
optimized similarity score to the best possible value, thus, the similarity score
closest to 1 that we can achieve.

2.2. Meta-matching Techniques

What exactly is ontology Meta-Matching in practice? It is the technique of se-
lecting the appropriate algorithms, weights and thresholds in ontology matching
scenarios in order to obtain a satisfactory alignment between ontologies. Figure
2 shows a diagram for modeling the actions in a Meta-Matching process.

Note that algorithms do not need to be reconsidered. The idea is to provide
all possible algorithms initially and then automatically associate a weight of 0 to
those that are not useful for solving the problem. How the algorithms are used or
the weights and the threshold recalculated are what makes one Meta-Matching
strategy better than another, in terms of accuracy and time consumption.

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 7

Class

Weights |
No, so
recalulate

Uses
|
Class
Weighted
similarity
measure

Class

Algorithms [« Uses

Uses
Class Class Class

Uses i
Ontology [*— ——| Evaluation [—Uses—= L

benchmark process

Returns

Class ObjectProperty

—Check—s| Isoptimum?

Yes

|

Class
Optimized
matching
function

Result

Fig. 2. General model for Meta-Matching

In general, we can describe the following as characteristics of a Meta-Matching
task:

— It is not necessary for it to be done at runtime. Functions are computed and
can be reused.

— It must be an automatic process, because it is a problem with a very complex
computational nature.

— It must return the best possible matching function, thus, the function that
best mimics the behavior of a human expert user.

Moreover, Meta-matching can be seen from two points of view: (i) From the
point of view of the algorithmic techniques used to obtain the matching function:

— Aggregation. This technique (Domshlak et al, 2007) determines the upper
bound T(n) on the values obtained from a sequence of n matchers, then cal-
culates the average value to be T(n)/n.

— Combination. The main idea is to combine similarity values predicted by
multiple matchers to determine correspondences between ontology entities.
Where combinations can be as simple as: arithmetic or harmonic means, max-
imum, minimum, Minkowski distances, any kind of weighted product or sum,
and so on, or more complex combinations like Linguistic Combinations (Ji et
al, 2006)

— Composition. Let fi, fo,..., f, be n unique matchers, a composition is a
function f(O1,02) = f1 0 fao...0 f,. Thus, the idea of this mechanism is to
use simple functions to build more complicated ones

8 Martinez-Gil and Aldana-Montes

(ii) From the point of view of the computer science paradigm that makes the
Meta-Matching possible, i.e. the form of recalculating the parameters. Although,
this problem can be solved trivially by a brute force search when the number
of matchers to use is low, Meta-Matching scales better for a higher number of
matchers. For this reason we do not include brute force methods as a viable
technique. These are the two main groups of techniques considered:

— Heuristic Meta-Matching, where the most outstanding approaches are
Based on Genetic Algorithms meta-matching. In this case, it is said that pa-
rameters are optimized and, Greedy meta-matching, in such case, it is said
that parameters are estimated. In Genetic Strategies, solutions tend to scale
better and in Greedy techniques, solutions are obtained more quickly.

— Based on Machine Learning meta-matching, where the most outstand-
ing approaches are Relevance Feedback and Neural networks training for meta-
matching. In both cases, it is said that parameters are learned.

2.2.1. Heuristic Meta-Matching.

A heuristic is a method to help to solve a problem, commonly informal. It is used
particularly for a method that may lead to a solution which is usually reasonably
close to the best possible answer.

Two fundamental goals in computer science are to find algorithms with proba-
bly good run times and with probably good or optimal solution quality. A heuristic
is an algorithm that abandons one or both of these goals; for example, it usually
finds pretty good solutions, but there is no proof that the solutions could not get
arbitrarily bad; or it usually runs reasonably quickly, but there is no argument
that this will always be the case.

Therefore, the use of heuristics is very common in real world implementations.
For many practical problems, a heuristic algorithm may be the only way to get
good solutions within a reasonable amount of time.

A lot of tools clearly implement heuristic Meta-Matching, we can see the
clearest example in the default configuration of COMA (Do and Rahm, 2002),
where an expert has initially adjusted the weights of the conceptual and struc-
tural techniques respectively. In order to avoid human interaction in this field, we
can use Genetic Algorithms for optimizing the parameters or Greedy Algorithms
to estimate them.

Based on Genetic Algorithm methods. Based on Genetic Algorithm
methods (Forrest, 1997) are adaptive heuristic search algorithms premised on
the evolutionary ideas of natural selection and genetics. The basic concept of
GAs is designed to simulate the natural evolutionary system.

This approach is able to work with several goals (Martinez-Gil and Aldana-
Montes, 2008): maximizing the precision, maximizing the recall, maximizing the
fMeasure or reducing the number of false positives. Moreover, it has been tested
combining some leading-edge similarity measures over a standard benchmark
and produced some good results.

Another proposal is (Wang et al, 2006), a genetic algorithm-based optimiza-
tion procedure for the ontology matching problem that is presented as a feature-
matching process. First, from a global view, they model the problem of ontology
matching as an optimization problem of a mapping between two compared on-
tologies, with each ontology having its associated feature sets. Secondly, as a

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 9

powerful heuristic search strategy, a genetic algorithm is employed for the ontol-
ogy matching problem. Given a certain mapping as optimizing object for GA, a
fitness function is defined as a global similarity measure function between two
ontologies based on feature sets.

Greedy Meta-Matching Greedy (Cohen et al, 1996) Meta-Matching is a
technique which, given a particular matching task, tries to automatically tune
an ontology matching function. For that purpose, it tries to choose the best
matchers and parameters to be used, but with a short-sighted strategy. The most
popular example of this technique can be found at (Lee et al, 2001). Results from
Greedy techniques are, in general, worse than those based on Genetics, but its
computation time also tends to be much lower.

2.2.2. Based on Machine Learning Methods

Based on Machine Learning (Langey, 1994) Meta-Matching techniques considers
both schema information and instance data. This kind of Meta-Matching can be
divided into two subtypeﬂ (i) Relevance Feedback and (ii) Neural Networks.

Relevance Feedback. This kind of approach explores the user validation of
initial ontology alignments for automatically optimizing the configuration param-
eters of the matching strategies. A clear example of this kind of Meta-Matching
is (Lee et al, 2001). Using such techniques we are able to avoid the user, and
maybe the context, the dependency of the matching task, however, it implies
spending a lot of time on training the systems. To do that automatically, it is
possible to use Neural Networks.

Neural Networks Training. A neural network (Jordan and Bishop, 1997)
is an interconnected group of artificial neurons that uses a mathematical or
computational model for information processing based on a connectionistic ap-
proach to computation. In most cases a neural network is an adaptive system that
changes its structure based on external or internal information flowing through
the network. In more practical terms neural, networks are non-linear statistical
data modeling or decision making tools. They can be used to model complex
relationships between inputs and outputs or to find patterns in data.

Neural networks training for Meta-Matching consists of training a neural
network with heterogeneous enough benchmarks and then using the knowledge
to predict new similarity functions. This is the case of (Huang et al, 2007) where
authors exploit an approach to learn the weights for different semantic aspects
of ontologies, through applying an artificial neural networks technique.

Another approach consists of an automatic ontology alignment method based
on the recursive neural network model that uses ontology instances to learn
similarities between ontology concepts. Recursive neural networks are an exten-
sion of common neural networks, designed to process efficiently structured data
(Chortaras et al, 2005).

2 Although learning techniques exist such as Bayes learning, WHIRL learning, decision trees
or stacked generalization, there are no Meta-Matching proposals using them as yet

10 Martinez-Gil and Aldana-Montes
3. Greedy Strategy

In this section, we are going to discuss the greedy strategy to solve the Meta-
Matching problem. Moreover, we propose an efficient greedy algorithm and com-
pute its associated complexity according to the big O notation.

3.1. Maximum Similarity Measure

An initial approach for an ideal Customizable Similarity Measure which would
be defined in the following way:

Let A be a vector of atomic matching algorithms in the form of a similarity
measure and @ a numeric weight vector then:

MaSiMe(cl,c2) =z €[0,1] € R — 3 </Y, 1U> , T = max(zziqf A; - wy)
with the following restriction sz w; <1

But as we showed in Section 3, this kind of measure leads to an optimiza-
tion problem for calculating the weight vector, because the number of candidates
from the solution space is infinite. For this reason, we present MaSiMe, which
uses the notion of granularity for setting a finite number of candidates in that
solution space. This solution means that the problem of computing the similarity
can be solved in a polynomial time.

Definition 7. Maximum Similarity Measure (MaSiMe).

MaSiMe(cl,c2) =z € [0,1] € R — 3 <ff, u')',g> o =maz(Y =1 A - w;)
with the following restrictions Z:z? w; < 1AYw; € @,w; € {g}

Example 2. Given an arbitrary set of algorithms and a granularity of 0.05,
calculate MaSiMe for the pair (author, name_author).

MaSiMe(author, name_author) = .542 € [0,1] —
J(A = (L, B,M,Q),w = (0.8,0,0,0.2), g = 0.05),0.542 = maz(X'=* 4; - w;)
Where L = Levhenstein (Levenshtein, 1996), B = BlockDistance (Ziegler et

al, 2006), M = MatchingCoefficient (Ziegler et al, 2006) , @ =
QGramsDistance (Ukkonen, 1992)

This example shows an entity alignment, however, MaSiMe can be applied
with different kinds of granularity:

— Entity-FEntity. In this case, we may compute the best weights to align a pair
of entities.

— Ontology-Ontology. In this case, MaSiMe may compute the best weighted func-
tion for aligning two input ontologies.

— Benchmark Level. This kind of calculation implies the computation of the best
weights for a whole benchmark.

There are several properties for Definition 3:

Property 1 (Continuous uniform distribution). A priori, MaSiMe presents

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 11

a continuous uniform distribution in the interval [0, 1], that is to say, its proba-
bility density function is characterized by

Va,be[0,1]Hf(x):ﬁfora§x§b

Property 2 (Maximality). If one of the algorithms belonging to the set of
matching algorithms returns a similarity of 1, then the value of MaSiMe is 1.

34; € A, Ai(cl,¢2) =1 — MaSiMe(cl,¢2) = 1
Moreover, the reciprocal is true
MaSiMe(cl,¢2) =1 — 3A; € A, A;(cl,¢2) =1

Example 3. Let us suppose that we have: A = (Google Similarity — Dis-
tance (Ehrig, 2007), BlockDistance, MatchingCoefficient, QGramsDistance) and
g = 0.05, calculate W for maximizing R in the mapping (plane, aeroplane, Equiv-
alence, R)

Solution:

(1,0,0,0)

So the optimum matching algorithm for the equivalence of (plane, aeroplane) in
this case would be:

1 - GoogleDistance + 0 - BlockDistance + 0 - MatchingCoef ficient + 0 -
QGramsDistance, R = 0.555

Moreover, we can say that the worst vector is @ = (0,0.8,0.15,0.05) because it
generates R = 0.027

Property 3 (Monotonocity). Let S be a set of matching algorithms, and let
S’ be a superset of S. If MaSiMe has a specific value for S, then the value for S’
is either equal to or greater than this value.

vS' D S, MaSiMes, = x — MaSiMey > x

Property 4. (Dependent completeness). If one of the algorithms belonging
to the set of matching algorithms provides a similarity of 1 and the chosen gran-
ularity is not a submultiple (notation ') of 1, then the value of MaSiMe is less
than 1.

34, € AN 1¢ {g} AAicl,2) =1 — MaSiMe(cl,c2) < 1

Example 4. Let us suppose we have the same conditions as in Example 3, i.e.,
that we have: A = (Google Similarity Distance, BlockDistance, MatchingCo-
efficient, QGramsDistance) but now g = 0.21. Calculate & for maximizing R in
the mapping (plane, aeroplane, Equivalence, R)

Solution:

(0.84,0,0,0)

12 Martinez-Gil and Aldana-Montes

So the optimum matching algorithm for the equivalence for (plane, aeroplane)
is not the same as that in Example 3.

The reason is that if the granularity is not a multiple of 1, the summation
from the weight vector cannot be 1, and therefore 4 - cannot be optimal.

3.2. Computing the Weight Vector

Once the problem is clear and the parameters A and g are known, it is necessary
to effectively compute the weight vector. At this point, we leave the field of
similarity measures to move into the field of programming engineering.

It is possible to compute MaSiMe in several ways, for this work, we have de-
signed a greedy mechanism that seems to be effective and efficient. The following
paragraphs discuss this mechanism.

3.2.1. Greedy strategy.

A greedy strategy follows the problem solving heuristic of making the locally
optimum choice at each stage with the hope of finding the global optimum.

Theorem 1 (About computing MaSiMe). Let S be the set of all the match-
ing algorithms, let A be the subset of S, thus, the set of matching algorithms that
we want to use, let g be the granularity, let Q the set of positive Rational Num-
bers, let i, 7, k, ..., t be indexes belonging to the set of multiples for the granularity
(denoted {g}) then, a set of rational vectors r exists where each element r; is re-
sult of the scalar product between A and the index pattern (i,j—i,k—7j,....,1—1).
All of this subject to j > i Nk > jAN1> k. Moreover, the final result, called R,
is the maximum of the elements r; and is always less or equal than 1.

And in mathematical form:

JAC S,3ge(0,1] € Q+,Vi,j kst €{g} > I ri=A-(i,j—ik—j,....1—1)
with the followings restrictions j > 1 ANk >jAN1 >k
R = mazx (1;) <1

Proof (Theorem 1). r; is by definition the scalar product between a vector
of matching algorithms that implements similarity measures and the pattern
(¢,5 — i,k — j,...., 1 — t). In this case, a similarity measure cannot be greater
than 1 by Definition 1 and the sum of the pattern indexes cannot be greater than
1 by restriction (i, — i,k — j,...,1 —t), so scalar product of such factors cannot
be greater than 1.

Now, we are going to show how to implement the computation of MaSiMe by
using an imperative programming language. Algorithm 1 shows the pseudocode
implementation for this theorem.

The algorithm can be stopped when it obtains a partial result equal to 1,
because this is the maximum value than we can hope for.

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 13

Input: ontology: O, O’
Input: algorithm vector: A
Input: granularity: g
Output: MaSiMe
foreach pair (cl,c2) of entities €0 and O’do
foreach index ¢,j,k,....,t € kK X g do
result = Aj(cl,c2) - i +
As(cl,c2) - j—1i +
As(el,e2) - k—j +
Ag(cl,2) -t —k +
An(cl,e2) - 1—t;
if result > MaSiMe then
| MaSiMe = result;
end
if MaSiMe = 1 then
| stop;
end
end
end
Algorithm 1: The greedy algorithm to compute MaSiMe

3.2.2. Complexity.

The strategy seems to be brute force, but it is not. It should be taken into account
that the input data size is n‘te"9" °f 4 bhut the computational complexity for the
algorithm according to O notation is

O(nlength of a=1)

In this way, the total complexity (TC) for MaSiMe is:
TC(MaSiMes) = O(max(maz(O(A;)), O(strategy)))

and therefore for MaSiMe using the greedy strategy
TC(MaSiMes) = O(max(maz(O(A;), O(nlenath of A=1y))

Example 5. Given the set A = {Levhenstein, BlockDistance, MatchingCo-
efficient, QGrams-Distance} , the complexity for the matching process using
MaSiMe is calculated.

TC(MaSiMey) = O(maz(0(n?),0(n?))) = O(n?)

Brute force complexity for 4 matching algorithms may require 4 loops, MaSiMe
requires 3 loops, so we can conclude that O,, < Oypy.

4. Genetic Strategy
Genetic Algorithms (GAs) are often used to search along very high dimensional

problems spaces. For example, if we want to find the maximum value of the
function wsf with three independent variables z, y and z:

14 Martinez-Gil and Aldana-Montes

’wa(Ol7 02) =
x - datatype(O1,02) + y - normalization(O1,02) + z - synonyms(O1, O2)

where z, y and z are weights to determine the importance of the three asso-
ciated similarity measures, which belong, for instance, to the continuous interval
[0, 1]. The problem that we want to solve is to find a good value of z, y and 2
in order to find the largest possible value of wsf.

While this problem can be solved trivially by a brute force search over the
range of the independent variables x, y and z, the GA method scales very well to
similar problems of a higher dimensionality; for example, we might have functions
using a large number of independent variables z, y, z,..., t. In this case, an
exhaustive search would be prohibitively expensive.

The methodology of the application of a GA requires defining the following
strategies:

— Characterize the problem by encoding in a string of values the contents of a
tentative solution.

— Provide a numeric fitness function that will allow the relative quality of each
individual tentative solution in a population to be rated.

4.1. GOAL

Now, we describe the method to solve meta-matching schemas that we have de-
veloped using Genetic Algorithms.

Definition 8. Genetics for Ontology ALignments (GOAL). It is an elitist
genetic algorithm which works under the paradigm of a single goal programming
strategy. The idea behind GOAL is to automatically tune a combination of basic
matching algorithms using sample cases solved by experts. The goal to optimize
can be whatever specific aspect resulting from the evaluation of the matching
tasks.

GOAL is designed to work with lots of basic algorithms, all of them are chosen
on the basis of their results, instead of their behavior, so can be considered as
black boxes. The idea behind GOAL is that each component of the weight vector
is associated to a basic matching algorithm. If we measure the distance between
the result generated using the weight vector and the fitness value, we can know
how good a weight vector is. In fact, we can know what the best weight vector is.
Now we can interpret this vector; a value of 0 associated to a matching algorithm
means that such algorithm is not relevant to solve the problem. A value between
0 and 1 means that the algorithm is relevant and if the value is 1 then the
algorithm is able to solve the problem by itself.

Moreover, GOAL tries to not return local minimum for the weight vector
associated to the matching function, because the crossover we introduce produces
random chromosomes in order to extend the search space.

Apart from the quality of the results which we will evaluate in the next
section, advantages inherent to GOAL are the great scalability and the possibility
of avoiding the internal behavior of the basic matching algorithms.

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 15
4.2. Development

To develop GOAL, we have characterized the search space as some parameters.
Then, we have encoded several parameters in a single chromosome, so we have
designed a method for converting a 10-bit representation to a set of floating-point
numbers in the arbitrary range [0, 1].

Later, we have designed a fitness function to determine which chromosomes
in the population are most likely to survive and reproduce using genetic crossover
and mutation operations.

To return the fitness function, we can choose any parameter provided for the
alignment evaluation process, i.e. precision, recall, fmeasure or fallout. In this
way, we are providing the possibility of selecting one of these goals.

— Optimizing the precision (fitness := precision)
— Optimizing the recall (fitness := recall)
— Optimizing the fmeasure (fitness := fmeasure)

— Reducing the number of false positives (fitness := fall — out)

All of them are concepts used in Information Retrieval for measuring the
quality of a retrieval task. Precision is the percentage of items returned that are
relevant. Recall is the fraction of the items that are relevant to a query (in this
case, to a matching task). fmeasure is a weighted sum from precision and recall.
Finally, false positives are relationships which have been provided to the user
even though they are false (Buckland and Gey, 1994). In some domains, (for
instance in medicine) false positives are absolutely unwanted. Take into account
that we know all of them because we are using a set of test cases solved by an
expert (or committee of experts). So the resulting matching function will behave
ideally as experts who solve the sample cases.

4.3. Preliminary Study
We are going to do a preliminary study of the parameters for the algorithm.

— For the number of genes per chromosome we have selected such values as
5, 10 and 20. A study using a t-Test distribution has shown us that that the
differences between samples are not statistically significant. Therefore, we have
selected 20 genes per chromosome.

— For the number of individuals in the population, we have selected such values
as 20, 50 and 100. Again, a t-Test statistical distribution has shown that the
differences between these samples are not statistically significant. We have
selected a population of 100 individuals.

— Related to crossover and mutation fraction, we have chosen a high value for
the crossover between genes and, a small percentage for mutations, because
we wish a classical configuration for the algorithm.

— After ten independent executions, we noticed that the genetic algorithm did
not improve the results beyond the fifth generation, so we have set a limit of
five generations.

16 Martinez-Gil and Aldana-Montes
4.4. Data to Repeat the Experiment

Related to the conditions of the experiment, we have used:

— As similarity measure vector:
{ Levhenstein(Levenshtein, 1996), SIFO(Martinez-Gil et al, 2008), Stoilos(Stoilos
et al, 2005), QGrams(Ukkonen, 1992)}

— The GA has been configured taking the following parameters into accountﬂ

20 genes per chromosome

A population of 100 individuals
0.98 for crossover fraction

0.05 for mutation fraction

We allow 5 generations

— The platform characteristics: Intel Core 2 Duo, 2.33Ghz and 4GB RAM. The
programming language was Java.

5. Evaluation

The evaluation of a Meta-Matching strategy consists of the evaluation of its
returned matching function.
There are several ways to evaluate an output alignment:

— Compliance measures provide some insight on the quality of identified align-
ments.

— Performance measures show how good the approach is in terms of computa-
tional resources.

— User-related measures help to determine the overall subjective user satisfac-
tion, partially measured, e.g., through user effort needed.

— There are task-related measures, which measure how good the alignment was
for a certain use case or application.

In practice, there is a certain degree of agreement to use some measures from
the Information Retrieval field (Baeza-Yates and Ribeiro-Neto, 1999). These are:
precision, recall, fmeasure and fallout.

{relevant mappings} N {retrieved mappings}

Precision = -
{relevant mappings}

{relevant mappings} N {retrieved mappings}

Recall = {retrieved mappings}
Fmeasure — 2 X precision X recall
precision + recall
Fallout = {non relevant mappings} N {retr. mappings}

{non relevant mappings}

In Table 1, we explain briefly each of the test we are going to use to measure

3 Fitness and search space have been explained in the previous section

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 17

Id Brief explanation

101 Strictly identical ontologies

102 An ontology and a null ontology

103 An ontology and other with a lang. generalization

104 An ontology and other with a language restriction

201 Ontologies without entity names

202 Ontologies without entity comments

203 Ontologies without entity names and comments

204 Ontologies with different naming conventions

205 Ontologies whose labels are synonymous

206 Ontologies whose in different languages

221 An ontology and other with no specialization

222 An ontology and other with a flatenned hierarchy

223 An ontology and other with a expanded hierarchy

224 Identical ontologies without instances

225 Identical ontologies without restrictions

301 A real ontology about bibliography

Table 1. Brief explanation of the performed tests
Ontology Comment Precision Recall F-Meas. Fall-out

101 Reference alignment 1.00 1.00 1.00 0.00
102 Irrelevant ontology N/A N/A N/A N/A
103 Language generalization 1.00 1.00 1.00 0.00
104 Language restriction 1.00 1.00 1.00 0.00
201 No names 1.00 1.00 1.00 0.00
202 No names, no comments 1.00 1.00 1.00 0.00
203 Comments was misspelling 1.00 1.00 1.00 0.00
204 Naming conventions 1.00 0.91 0.95 0.00
205 Synonyms 1.00 0.19 0.33 0.00
206 Translation 1.00 0.19 0.33 0.00
221 No specialization 1.00 1.00 1.00 0.00
222 Flatenned hierarchy 1.00 1.00 1.00 0.00
223 Expanded hierarchy 1.00 1.00 1.00 0.00
224 No instance 1.00 1.00 1.00 0.00
225 No restrictions 1.00 1.00 1.00 0.00
301 Real: BibTeX/MIT 0.93 0.23 0.37 0.06

Table 2. Behavior of MaSiMe for the standard benchmark of the OAEI

the quality of MaSiMe and GOAL using these formulas. These test cases belongs
to the Ontology Matching Evaluation Initiativeﬁ (OAEI). These test cases try
to measure the quality of methods when solving several use cases which are

common in ontology matching scenarios. On the other hands, using this set of

data means that GOAL will behave as international experts who solve the sample
cases included in the benchmark.

Table 2 shows the results we have obtained for the greedy strategy called
MaSiMe. Table 3 shows the results we have obtained for the genetic strategy
called GOAL. Figure 3 shows a graphical comparison of the two strategies we

have used. Next subsection discusses the results.

4 http://www.ontologymatching.org

18 Martinez-Gil and Aldana-Montes

Ontology Comment Precision Recall F-Meas. fallout
101 Reference alignment 1.00 1.00 1.00 0.00
102 Irrelevant ontology N/A N/A N/A N/A
103 Language generalization 1.00 1.00 1.00 0.00
104 Language restriction 1.00 1.00 1.00 0.00
201 No names 1.00 1.00 1.00 0.00
202 No names, no comments 1.00 1.00 1.00 0.00
203 Comments was misspelling 1.00 1.00 1.00 0.00
204 Naming conventions 1.00 1.00 1.00 0.00
205 Synonyms 1.00 0.71 0.83 0.06
206 Translation 1.00 1.00 1.00 0.00
221 No specialization 1.00 1.00 1.00 0.00
222 Flatenned hierarchy 1.00 1.00 1.00 0.00
223 Expanded hierarchy 1.00 1.00 1.00 0.00
224 No instance 1.00 1.00 1.00 0.00
225 No restrictions 1.00 1.00 1.00 0.00
301 Real: BibTeX/MIT 0.90 0.69 0.78 0.07

Table 3. Behavior of the GOAL for the standard benchmark of the OAEI

Summary Results

12

0,8 +——
= MaSiMe

06+—
mGOAL

Average Score

024+—
0 — |

Precision Recall F-Measure Fall-Qut

Fig. 3. Comparative results between strategies

5.1. Discussion

Precision takes all retrieved correspondences into account because measures the
number of correct correspondences divided by the number of all returned corre-
spondences. We reach an average precision of 99 percent because, most of times,
it is possible to find a weighted algorithm combination which retrieve only correct
correspondences.

On the other hand, in theory, it is easy to achieve recall of 100 percent by
returning all possible correspondences between two ontologies. But recall alone
is not enough; it is necessary to measure the number of non-relevant correspon-
dences also. To to that, we compute the precision. So take into account that
recall is computed in relation to the precision on all of our experiments.

So we have that getting only a good precision or only a good recall is not
enough in general purpose scenarios. It is necessary to obtain a good combina-
tion of them. For this reason, fmeasure appeared. Remember that our strategy
can improve whatever specific aspect of a matching task even fmeasure what it is
really one of the great advantages of this work. That it is to say, we can improve
the pair precision-recall when defining this fmeasure as the parameter to opti-
mize. Possibility to optimize this parameter makes that GOAL is better in terms

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 19

Precision Recall

H

Average Score
Average Score

MaSiMe GOAL COMA++ RiMOM FALCON CixMatch MaSiMe GOAL COMA++ RiMOM FALCON CtxMatch

Fig. 4. Comparison with other tools

of accuracy than MaSiMe. MaSiMe is, however, an acceptable method for ob-
taining low cost results as we will see in the next section, where we compare these
two strategies with other existing tools. In the future, we want to improve to a
multiobjetive strategy (Pappa and Freitas, 2009) to avoid unwanted deviations
from precision and recall values.

6. Related Work

If we look at the literature, we can distinguish between individual algorithms (i.e.
Similarity Flooding (Melnik et al, 2002) or S-Match (Giunchiglia et al, 2004))
which apply only a single method of matching items i.e. linguistic or taxonomical
matchers and combinations of the former ones, which intend to overcome their
limitations by proposing hybrid and composite solutions. A hybrid approach
(i.e.Cupid (Madhavan et al, 2001)) follows a black box paradigm, in which var-
ious individual matchers are joined together in a new algorithm (Domshlak et
al, 2007), while the so-called composite matchers allow increased user interac-
tion (i.e. COMA++ (Amueller et al, 2005), Falcon (Hu et al, 2006), CtxMatch
(Niedbala, 2006), RiMOM (Li et al, 2006)).

The problem is that those kinds of proposals, in the best of cases, use weights
defined by an expert for configuring the matchers, but using our approaches
involves computing the weights in an automatic way, so that the process can
be more accurate. In Figure 4, we can see a comparison between some of the
most popular tools for matching ontologies. The figure represents the arithmetic
means of the values obtained for the standard benchmark for the precision and
recall, obtaining the fmeasure and fallout is trivial.

To avoid the need for human expert intervention, there are three research lines
now; one for evaluating the results of an alignment tool and maybe feedback the
process (Gal et al, 2005) (Lambrix and Tan, 2007), another that tries to select
automatically the algorithms according to their metadata (Mochol and Simperl,
2006) and another called Ontology Meta-Matching (Euzenat and Shvaiko, 2007)
that tries to optimize automatically the parameters related to the matching task.
So, our approach could be considered a mechanism for Meta-Matching. Most
outstanding examples for this paradigm are: (i) Based on Exhaustive search
solutions, (ii) Based on Neural Networks solutions, and (iii) Based on Genetic
Algorithms solutions:

20 Martinez-Gil and Aldana-Montes
6.1. Based on Exhaustive Search Solutions

Ontology Meta-Matching can be solved trivially by an exhaustive search when
the number of similarity measures is low, one of the most outstanding approaches
in this sense is eTuner (Lee et al, 2001) that it is a system which, given a partic-
ular matching task, automatically tunes an ontology matching system (comput-
ing one-to-one alignments). For that purpose, it chooses the most effective basic
matchers, and the best parameters to be used.

However, exhaustive searches are very expensive, and unworkable when com-
bining a large number of measures from a computational point of view. For this
reason, most solutions try to avoid this kind of methods.

6.2. Based on Machine Learning Solutions

Based on Machine Learning Meta-Matching techniques can be divided into two
subtypes: Relevance feedback (Salton and Buckley, 1990) and Neural Networks
(Jordan and Bishop, 1997):

— The idea behind relevance feedback (Salton and Buckley, 1990) is to take
the results that are initially returned from a given query and to use infor-
mation about whether or not those results are relevant to perform a new
query: APFEL (Alignment Process Feature Estimation and Learning) (Ehrig
et al, 2005) is a machine learning approach that explores user validation of
initial alignments for optimizing automatically the configuration parameters
of some of the matching strategies of the system, e.g., weights, thresholds, for
the given matching task.

— Neural Networks (Jordan and Bishop, 1997) are non-linear statistical data
modeling or decision making tools. They can be used to model complex rela-
tionships between inputs and outputs or to find patterns of data. SFS (Huang
et al, 2007) is a tool for ontology Meta-Matching that tries to obtain auto-
matically a vector of weights for different semantic aspects of a matching task,
such as comparison of concept names, comparison of concept properties, and
comparison of concept relationships. To do so, it uses the neural networks
technique.

However, these kinds of solutions involve spending much effort and time on
training the systems in relation to our two proposals.

6.3. Based on Genetic Algorithms Solutions

In relation to solutions based on Genetic Algorithm approaches, the most out-
standing tool is Genetic Algorithms Based Ontology Matching (GAOM) (Wang
et al, 2006) which is a genetic algorithm based approach for solving the ontology
matching problem. For the purposes of better and more precise representation
of ontology features, it defines the features from two points of view: intensional
and extensional. On the other hand, the ontology matching problem is modeled
as a global optimization of a mapping between two ontologies. Then a genetic
algorithm is used to achieve an approximate optimal solution.

Table 4 shows a comparison of the results for both GAOM and our proposal.

Although we follow the same paradigm, it can be observed that GOAL shows

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 21

precision recall fmeasure
GAOM 0.94 0.87 0.90
GOAL 0.99 0.96 0.97

Table 4. Comparison between GAOM and our proposal

slightly better results. We think that the main differences in relation to the other
tool is that they do not use basic and widely tested matching solutions but their
own algorithms and the fitness function that we use, because we do not force to
the algorithm to find always a global solution, this fact makes worse the results.
Therefore, as far as we know, our results constitute the new state of the art when
solving meta-matching schemes using GAs.

7. Conclusions

We have presented Ontology Meta-Matching, a novel computational discipline for
flexible and accurate automatic ontology matching that generalizes and extends
previous proposals for exploiting simple ontology matchers. We have presented
the main techniques for ontology Meta-Matching. These techniques take into
account that it is not trivial to determine what the weights of the semantic
aspects should be and tries to avoid the research work which depends heavily on
human heuristics.

We have provided an analysis of the most popular algorithms and techniques
for simple matching, and characterized their relative applicability as black boxes
in a Meta-Matching environment. It is necessary to bear in mind that the suc-
cess of the Meta-Matching depends largely on the kind of the underlying simples
matchers used and the heterogeneity and soundness of the benchmarks for esti-
mating, optimizing or learning the parameters.

We have designed and implemented two approaches to solve the Ontology
Meta-Matching problem. Firstly, we have presented a greedy approach that is
reasonably efficient, because is fast and reasonably accurate. Secondly, we have
presented an approach based on Genetic Algorithms that is able to obtain more
accurate results and is highly scalable, thus, it can be expanded with a lot of
simple matching algorithms.

We have compared our two approaches with the most promising techniques
and tools in the area of Ontology Meta-Matching. Like techniques, tools can
be classified as either heuristic or learning-based. Such tools represent a serious
effort to make the task of ontology matching a more independent process from
users, context, and even data involved. The results shows that our approach is
in line with the best available tools and is able to overcome their limitations in
some specific cases.

The lessons learned on Ontology Meta-Matching will allow us to work with
other kinds of conceptual schemas for modeling knowledge. In this sense, we are
convinced that Ontology Meta-Matching is a perfect candidate for taking users
a step further in the state-of-the-art in terms of interoperability in the Semantic
Web.

22 Martinez-Gil and Aldana-Montes
8. Acknowledgments

We wish to thank to all anonymous reviewers for their comments and sugges-
tions which have helped to improve this work. We thank Enrique Alba for his
comments in relation to the approach based on Genetic Algorithms. This work
has been funded by the Spanish Ministry of Innovation and Science through the
project: ICARIA: A basic infrastructure for development in the Semantic Web
and its application to conceptual mediation in bioinformatics. TIN2008-04844
and Pilot Project for Training and Developing Technologies for Applied Systems
Biology, P07-TIC-02978 (From the Regional Government of Andalucia).

References

Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and ontology matching with
COMA++. In: SIGMOD Conference 2005, pp 906-908

Baeza-Yates R, Ribeiro-Neto BA (1999) Modern Information Retrieval. ACM Press / Addison-
Wesley, ISBN 0-201-39829-X

Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scientific American, May

Buckland MK, Gey FC (1994) The Relationship between Recall and Precision. JASIS 45(1):
12-19

Cabral L, Domingue J, Motta E, Payne TR, Hakimpour F (2004) Approaches to Semantic
Web Services: an Overview and Comparisons. In ESWS 2004, pp 225-239

Chen H, Perich F, Finin TW, Joshi A (2004) SOUPA: Standard Ontology for Ubiquitous and
Pervasive Applications. MobiQuitous, pp 258-267

Chortaras A, Stamou GB, Stafylopatis A (2005) Learning Ontology Alignments Using Recur-
sive Neural Networks. In: ICANN (2) 2005, pp 811-816

Cilibrasi R, Vitanyi PMB (2007) The Google Similarity Distance. IEEE Trans Knowl Data
Eng 19(3): 370-383

Gerard D. Cohen, Simon Litsyn, Gilles Zmor: On greedy algorithms in coding theory. IEEE
Transactions on Information Theory 42(6): 2053-2057

Dietz JLG (2005) Enterprise Ontology. ICEIS 2005 (1): 5

Do HH, Rahm E (2002) COMA - A System for Flexible Combination of Schema Matching
Approaches. In: VLDB 2002: pp 610-621

Doerr M (2001) Semantic Problems of Thesaurus Mapping. J. Dig. Inf. 1(8)

Domshlak C, Gal A, Roitman H (2007) Rank Aggregation for Automatic Schema Matching.
IEEE Trans Knowl Data Eng 19(4): 538-553

Drumm C, Schmitt M, Do HH, Rahm E (2007) Quickmig: automatic schema matching for
data migration projects. In CIKM 2007, pp 107-116

Ehrig M, Staab S, Sure Y (2005) Bootstrapping Ontology Alignment Methods with APFEL.
In: International Semantic Web Conference 2005, pp 186-200

Ehrig M, Sure Y (2005) FOAM - Framework for Ontology Alignment and Mapping - Results
of the Ontology Alignment Evaluation Initiative. Integrating Ontologies

Ehrig M (2007) Ontology Alignment: Bridging the Semantic Gap. (Contents), 2007 Springer,
ISBN 978-0-387-36501-5

Euzenat J, Shvaiko P (2007) Ontology Matching. Springer-Verlag, 2007

Falconer S, Noy N (2007) Ontology Mapping - A User Survey. The Second International Work-
shop on Ontology Matching. In ISWC/ASWC, pp 49-60

Forrest S (1997) Genetic Algorithms. The Computer Science and Engineering Handbook 1997:
pp 557-571

Gal A, Anaby-Tavor A, Trombetta A, Montesi D (2005) A framework for modeling and eval-
uating automatic semantic reconciliation. VLDB J. 14(1): 50-67

Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: an Algorithm and an Implementation
of Semantic Matching. In: ESWS 2004, pp 61-75

He B, Chang KCC (2005) Making holistic schema matching robust: an ensemble approach. In:
KDD 2005, pp 429-438

Hu W, Cheng G, Zheng D, Zhong X, Qu Y (2006) The Results of Falcon-AO in the OAEI
2006 Campaign. Ontology Matching

Evaluation of Two Heuristic Approaches to Solve the Ontology Meta-Matching Problem 23

Huang J, Dang J, Vidal JM, Huhns MN (2007) Ontology Matching Using an Artificial Neu-
ral Network to Learn Weights. In: IJCAI Workshop on Semantic Web for Collaborative
Knowledge Acquisition

Ji Q, Liu W, Qi G, Bell DA (2006) LCS: A Linguistic Combination System for Ontology
Matching. In: KSEM 2006, pp 176-189

Jordan MI, Bishop CM (1997) Neural Networks. The Computer Science and Engineering Hand-
book, pp 536-556

Kiefer C, Bernstein A, Stocker M (2007) The Fundamentals of iSPARQL: A Virtual Triple
Approach for Similarity-Based Semantic Web Tasks. In: ISWC/ASWC 2007, pp 295-309

Lambrix P, Tan H (2007) A Tool for Evaluating Ontology Alignment Strategies. J Data Se-
mantics 8: 182-202

Langley P (1994) Elements of Machine Learning. 1994, ISBN 1-55860-301-8

Lee Y, Sayyadian M, Doan A, Rosenthal A (2001) eTuner: tuning schema matching software
using synthetic scenarios. VLDB J. 16(1): 97-122

Levenshtein V (1966) Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics-Doklady, Vol. 10, pp 707-710, August 1966

LiY, Li JZ, Zhang D, Tang J (2006) Result of Ontology Alignment with RIMOM at OAEI’06.
Ontology Matching

Maedche A, Motik B, Silva N, Volz R (2002) MAFRA - A MApping FRAmework for Dis-
tributed Ontologies. In EKAW 2002, pp 235-250

Madhavan J, Bernstein PA, Rahm E (2001) Generic Schema Matching with Cupid. In: VLDB
2001, pp 49-58

Maguitman A, Menczer F, Erdinc F, Roinestad H, Vespignani A (2006) Algorithmic compu-
tation and approximation of semantic similarity World Wide Web 9(4): 431-456

Martinez-Gil J, Alba E, Aldana-Montes JF (2008) Optimizing Ontology Alignments by Using
Genetic Algorithms. Proceedings of the Workshop on Nature Based Reasoning for the
Semantic Web. Karlsruhe, Germany.

Martinez-Gil J, Navas-Delgado I, Aldana-Montes JF (2008) SIFO. An efficient taxonomical
matcher for ontology alignment. Technical Report I'TI-08-3. Department of Languages and
Computing Sciences, University of Malaga.

Martinez-Gil J, Navas-Delgado I, Polo-Marquez A, Aldana-Montes JF (2008) Comparison of
textual renderings of ontologies for improving their alignment. Proceedings of the Second In-
ternational Conference on Complex, Intelligent and Software Intensive Systems. Barcelona,
Spain, pp 871-876

Melnik S, Garcia-Molina H, Rahm E (2002) Similarity Flooding: A Versatile Graph Matching
Algorithm and Its Application to Schema Matching. Proceedings of International Confer-
ence on Data Engineering, pp 117-128

Mochol M, Bontas-Simperl EP (2006) A High-Level Architecture of a Metadata-based Ontology
Matching Framework. In: DEXA Workshops, 354-358

Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv. 33(1):
31-88

Niedbala S (2006) OWL-CtxMatch in the OAEI 2006 Alignment Contest. Ontology Matching

Pappa GL, Freitas AA (2009) Evolving rule induction algorithms with multi-objective
grammar-based genetic programming. Knowl and Inf Syst 19(3):283-309

Pfitzner D, Leibbrandt R, Powers D (2009) Characterization and evaluation of similarity mea-
sures for pairs of clusterings. Knowl and Inf Syst. 19(3):361-394

Roitman H, Gal A (2006) OntoBuilder: Fully Automatic Extraction and Consolidation of On-
tologies from Web Sources Using Sequence Semantics. In: EDBT Workshops 2006, pp 573-
576

Rosenfeld B, Feldman R (2009) Self-supervised relation extraction from the Web. Knowl Inf
Syst. 17(1): 17-33

Salton G, Buckley C (1990) Improving retrieval performance by relevance feedback. JASIS
41(4):288-297

Stoilos G, Stamou GB, Kollias SD (2005) A String Metric for Ontology Alignment. In: Pro-
ceedings of International Semantic Web Conference 2005, pp 624-637

Kewei T, Yong Y: CMC: Combining Multiple Schema-Matching Strategies Based on Credibility
Prediction. In: DASFAA 2005, pp 888-893

Ukkonen E (1992) Approximate String Matching with g-grams and Maximal Matches. Theor
Comput Sci. 92(1): 191-211

Wang J, Ding Z, Jiang C (2006) GAOM: Genetic Algorithm based Ontology Matching. In:
Proceedings of IEEE Asia-Pacific Conference on Services Computing, pp 888-893

24 Martinez-Gil and Aldana-Montes

Wang P, Hu J, Zeng HJ, Chen Z (2009) Using Wikipedia knowledge to improve text classifi-
cation. Knowl Inf Syst. 19(3):265-281

Widdows D (2004) Geometry and Meaning. The University of Chicago Press, 2004

Woon WL, Wong KD (2009) String alignment for automated document versioning. Knowl Inf
Syst. 18(3):293-309 (2009)

WordNet (2008). Available at http://wordnet.princeton.edu

Ziegler P, Kiefer C, Sturm C, Dittrich KR, Bernstein A (2006) Detecting Similarities in On-
tologies with the SOQA-SimPack Toolkit. In: Proceedings of EDBT 2006, pp 59-76

Author Biographies

Jorge Martinez-Gil is currently Junior Researcher in the Depart-
ment of Languages of Computing Sciences at the University of Malaga
(Spain). He obtained his Bachelors and Master degree in Computer
Science in the University of Extremadura at Caceres (Spain), and his
MPhil in Software Engineering and Artificial Intelligence in the Uni-
versity of Malaga. His main research interests are related with the
interoperability in the Semantic Web. In fact, his PhD thesis deals
with the search for finding more flexible ways to match ontologies and
other kinds of models to represent knowledge. Mr Martinez-Gil has
published several papers in conferences and journals. He is a volunteer
reviewer in some international journals related to his research field,
and has been an invited researcher in some leading research groups.

José F. Aldana-Montes is currently professor in the Department
of Languages of Computing Sciences at the Higher Computing School
from the University of Malaga (Spain) and Head of Khaos Research, a
group for researching about semantic aspects of databases. Dr Aldana-
Montes has more than 20 years of experience in research about several
aspects of databases, semistructured data and semantic technologies
and its application to such fields as bioinformatics or tourism. He is
author of several relevant papers in top bioinformatic journals and
conferences. Related to teaching, he has been teaching theoretical and
practical aspects of databases at all possible university levels: from
undergraduate courses to PhD.

Correspondence and offprint requests to: José F. Aldana-Montes, Department of Languages and
Computing Sciences, Boulevard Luis Pasteur s/n 29071 Mélaga (Spain). Email: jfam@lcc.uma.es

http://wordnet.princeton.edu

	Introduction
	Problem Statement
	Technical Background
	Meta-matching Techniques

	Greedy Strategy
	Maximum Similarity Measure
	Computing the Weight Vector

	Genetic Strategy
	GOAL
	Development
	Preliminary Study
	Data to Repeat the Experiment

	Evaluation
	Discussion

	Related Work
	Based on Exhaustive Search Solutions
	Based on Machine Learning Solutions
	Based on Genetic Algorithms Solutions

	Conclusions
	Acknowledgments
	References

