
Optimal Stable Marriage with Skill Acquisition

Jorge Martinez-Gil
Software Competence Center Hagenberg GmbH

Softwarepark 32a, 4232 Hagenberg, Austria
jorge. martinez-gil@ scch. at

Abstract

The stable marriage problem is a classic in computer science and economics with many applica-
tions in matching markets. We introduce a new variant, Stable Marriage with Skill Acquisition,
where one side can gain new skills, shifting preferences and improving outcomes. We define
the problem, present a polynomial-time algorithm that guarantees stability, and optimize global
satisfaction by suggesting minimal skill additions (e.g., training courses). We prove correctness,
analyze complexity, and illustrate the approach in job recruitment, showing how strategic skill
development can yield near-optimal matchings.

Keywords: Stable marriage problem, stable matching, skill acquisition, training optimization,
Gale-Shapley algorithm, matching theory.

1. Introduction

The stable marriage problem (also known as the stable matching problem) is a classic prob-
lem that involves finding a stable one-to-one matching between two equally sized sets of agents
(traditionally, men and women) such that no pair of agents would both prefer each other over
their current partners. In their seminal paper, Gale and Shapley proved that a stable matching
always exists and presented the first algorithm (the Gale-Shapley algorithm) to find one [7]. This
algorithm guarantees the production of a stable matching in O(n2) time for n participants on each
side. Over the decades, the stable marriage model and its variants have been extensively studied
due to their broad applicability in real-world matching markets [10, 13]. Prominent examples
include the assignment of medical residents to hospitals and even the allocation of donated organs
to patients, where a stable matching is desirable to ensure no participants have an incentive to
deviate from the proposed allocation.

Numerous extensions and variations of the stable marriage problem have been explored to
address practical constraints and new domains. The hospital/residents problem generalizes stable
marriage to allow one side to have capacity for multiple matches, and other variants incorporate
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restrictions on admissible pairings, preferences with ties or incomplete lists, or richer structures
like matching with contracts [10, 4, 11]. In the human resources domain, recent research has
explored methods for enhancing the matching of job seekers to job openings by utilizing semantic
profile information and ranking techniques [14, 15, 16, 21, 20, 18, 22, 23, 25]. Related works on
recruitment ranking and screening further support the use of automated candidate evaluation
[6, 1, 5, 9, 8, 2]. However, existing approaches typically assume that participants’ preference lists
are fixed in advance and treat the matching process as static. To the best of our knowledge,
no prior work has investigated a scenario where the preferences themselves can be influenced
or optimized through strategic interventions, such as improving the qualifications of candidates,
in order to produce a more globally satisfactory matching outcome. This perspective is also
complementary to classic models of job matching [3] and to assignment-style formulations for
allocation problems [24].

In this paper, we propose a variant of the stable marriage problem for job markets where
applicants may acquire new skills before matching. The key question is: Which skills should be
provided to which applicants so that the resulting stable matching maximizes overall satisfaction?
Here satisfaction measures closeness to the ideal where everyone gets their first choice. Unlike
the standard problem, our formulation adds an optimization layer: find a stable matching that
is globally optimal while requiring minimal skill additions.

This new formulation has practical significance in domains like employment and education
planning. For example, public employment agencies and large companies can utilize our approach
to develop targeted training programs for job seekers or employees, aiming to enhance future
placement outcomes [19]. By identifying the most valuable skills to train (those that resolve
mismatches between what employers seek and what applicants offer), the method can increase
the likelihood of better matches (in terms of mutual preference satisfaction) while preserving
stability (no employer-applicant pair would prefer each other outside the matching). Therefore,
the main contributions of this work are summarized as follows:

• We formally define the Stable Marriage with Skill Acquisition problem, extending the classic
model to optimize participants’ skills. We introduce precise definitions of a perfect matching
scenario, a notion of distance from a given matching to the perfect scenario, and the concept
of an optimal stable matching that minimizes this distance.

• We present an iterative algorithm that computes a stable matching while simultaneously
determining a minimal set of additional skills that need to be imparted to achieve an optimal
outcome. The algorithm uses the Gale-Shapley deferred acceptance process as a subroutine
and integrates it with a search over possible skill improvements, guided by a quantitative
satisfaction metric. We prove that the algorithm will always find a stable matching that is
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globally optimal in terms of our satisfaction measure, and we analyze its time complexity.

• We show that our algorithm runs in polynomial time. In particular, we derive an upper
bound of O(n3) for a scenario with n applicants and n employers, which is efficient enough
for practical use in many real-world matching markets. This is notable given that a naive
exploration of all combinations of skill acquisitions would be exponential; our approach
avoids brute force by using the structure of the stable matching process.

• We provide a detailed case study in a job recruitment context to demonstrate how the
approach works in practice. We simulate a scenario involving multiple job seekers and
employers, each with distinct skill profiles and specific requirements. We show the initial
stable matching obtained with no additional training, compute the overall satisfaction
(distance to perfect matching), and then apply our algorithm to identify which trainings
would improve the outcome.

The rest of this article is organized in the typical manner. Section II presents the formal
problem statement and definitions. Section III provides a detailed description of our proposed
solution approach, including the algorithm and its theoretical analysis. Section IV illustrates the
approach with a concrete example. Section V discusses related work and further considerations.
Finally, Section VI concludes the paper and highlights future research avenues.

2. Problem Formulation

In this section, we formalize the new variant of the stable marriage problem that we address.
We begin by reviewing the standard stable marriage framework and then introduce the extensions
specific to our problem, including the concept of a globally optimal stable matching achieved
through skill acquisition.

2.1. Background: Stable Marriage Model

We consider two finite disjoint sets: A = {a1, a2, . . . , an}, the set of n applicants (e.g., job
seekers), and E = {e1, e2, . . . , en}, the set of n employers1 (e.g., companies with job openings).
Each applicant ai ∈ A and each employer ej ∈ E has a strict preference ordering over members
of the opposite set. We denote by P (ai) the ordered preference list of applicant ai, and by P (ej)

the ordered preference list of employer ej . For example, if P (ai) = (e3, e1, e2, . . . ), it means
applicant ai prefers employer e3 most, then e1 second, then e2, and so forth.

A matching M is a set of pairs (ai, ej) such that each ai and each ej appears in at most
one pair. In a perfect matching (in the basic scenario where |A| = |E| = n), every agent
is matched, so M consists of n pairs covering all members of A and E. We will focus on
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perfect matchings for simplicity of exposition, but the definitions can be extended to cases where
unmatched participants remain [17].

A matching M is said to be stable if there is no applicant-employer pair (ai, ej) such that
ai and ej are not matched in M , yet both would prefer each other over their current partners
in M (or being unmatched). Such a pair is called a blocking pair. The Gale-Shapley algorithm
ensures that a stable matching is found given any set of preference lists, and it is well-known that
in the basic stable marriage setting, the solution is typically not unique but lies on a lattice of
stable matchings with two extremal solutions (one optimal for one side, one for the other side).
However, all stable matchings share the important property of having no blocking pairs, which
guarantees no two participants can deviate to improve their situation.

2.2. Stable Marriage with Skill Acquisition: New Scenario

In the classical stable marriage problem, the preference lists P (a) and P (e) are assumed to be
exogenously given and fixed. In our scenario, these preferences are derived from the qualifications
of the applicants relative to the requirements of the employers, and crucially, we allow specific
changes to the qualifications of applicants (through acquiring new skills) before finalizing the
matching. We now describe the additional elements of the model:

• Skill profiles: Each applicant a ∈ A has a set of skills or competencies Prof (a) (represent-
ing the applicant’s profile), and each employer e ∈ E has a set of required or desired skills
Prof (e) for the job position it offers. These profiles influence preferences: intuitively, an
applicant tends to prefer employers for which they are well-qualified, and employers prefer
applicants who fulfill their requirements.

• Preference determination via suitability: We define a suitability function f that
quantifies how well a given applicant a and employer e match in terms of skills. We adopt
a simple and interpretable measure based on set overlap between Prof (a) and Prof (e).
Specifically, let

fa(a, e) =
|Prof (a) ∩ Prof (e)|

|Prof (a)|
,

fe(a, e) =
|Prof (a) ∩ Prof (e)|

|Prof (e)|
.

The value fa(a, e) can be interpreted as the fraction of a’s own skills that are relevant
to employer e’s needs, while fe(a, e) is the fraction of e’s requirements that a satisfies.
These values lie within the interval [0, 1]. A higher fa(a, e) indicates that a is using more
of their skills if working at e, and a higher fe(a, e) indicates a meets more of e’s desired
qualifications. One can combine these or use them individually to derive an overall score;
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for simplicity, one might consider an aggregate score f(a, e) as a weighted combination or
note that (fa, fe) together characterize the mutual suitability.

Based on the suitability scores, we generate the preference lists as follows: each applicant a
ranks employers in descending order of fa(a, e) (and ties, if any, can be broken lexicograph-
ically or by secondary criteria), and similarly each employer e ranks applicants by fe(a, e).
In other words, the more qualified an applicant is for a job, the higher that applicant will be
on the employer’s preference list; and the more an employer allows an applicant to utilize
their skills, the higher it is on the applicant’s list. This constructs the preference profile P

for all agents in a manner that is consistent with their skill profiles.

• Skill acquisition: We assume that applicants can acquire new skills through training, and
that doing so will augment their skill profiles. Initially, all applicants have their current
skill sets, and initial preferences are derived accordingly. We are interested in offering a set
of training courses that will add specific skills to certain applicants, resulting in new skill
profiles Prof ′(a) and consequently new preference lists P ′ derived from an unchanged suit-
ability function f (assumption of stationary evaluation criteria). Importantly, we assume
that employers’ requirements Prof (e) remain fixed (employers are not changing what they
are looking for), and that the act of training does not directly change employers’ preferences
beyond the effect of the applicants becoming more qualified.

We denote by ∆S a set of skill acquisition actions (for example, ∆S = {(ai, s)} meaning
applicant ai learns skill s). Applying ∆S transforms the market by updating each involved
ai’s profile: Prof ′(ai) = Prof (ai) ∪ {s} for each (ai, s) ∈ ∆S. This in turn can raise
the suitability scores fa and fe for certain applicant-employer pairs, thereby altering the
preference lists. After the training phase, a new matching can be computed based on the
updated preferences.

With these elements, we now define key concepts for our problem:

Definition 1 (Job Market and Stable Matching). We define a job market state as a tuple
(A,E, P,M), where A is the set of applicants, E is the set of employers, P is the set of preference
lists for all participants, and M is a matching between A and E consistent with those preferences.
A job market state is stable if M is a stable matching with respect to P (i.e., no blocking pair
exists).

Definition 2 (Perfect and Optimal Markets). We say a job market state (A,E, P,M) is
perfect if every participant is matched with their top-choice partner. In other words, for every
(ai, ej) ∈ M , ej is the first element in P (ai) and ai is the first element in P (ej). Such a situation
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represents an ideal outcome where all participants are maximally satisfied. In practice, a perfect
market is usually unachievable unless the preferences happen to align perfectly.

We measure the distance of a given matching M from a perfect outcome by counting how
far each matched pair is from being mutual first choices. Let rankai

(ej) denote the position of
employer ej in ai’s preference list (1 = top choice, 2 = second choice, etc.), and rankej (ai) the
position of ai on ej ’s list. We define the dissatisfaction score of a pair (ai, ej) under matching
M as

d(ai, ej) = (rankai
(ej)− 1) + (rankej (ai)− 1) .

This score equals zero if and only if ai and ej are each other’s first choice; it increases in value
as one or both parties are matched with lower-ranked options. The total distance to perfection
for the matching M can then be defined as

D(M) =
∑

(ai,ej)∈M

d(ai, ej) .

Equivalently, one could describe a perfec" matching M∗ as one with D(M∗) = 0. For any stable
matching M , D(M) ≥ 0, and smaller values indicate a more collectively satisfying outcome.

An optimal job market state in our context is a stable state (A,E, P,M) that achieves the
minimum possible distance to a perfect market. That is, M is stable under preferences P , and
for all other stable matchings M ′ (under some preference profile achievable via skill acquisitions),
we have D(M) ≤ D(M ′). In other words, no other stable matching (including those reachable if
different training decisions were made) has higher overall satisfaction. Our goal is to find such
an optimal state by appropriately choosing a set of skill acquisitions for applicants.

2.3. Problem Statement

Stable Marriage with Skill Acquisition Problem: We are given a set of applicants A

with initial skill profiles {Prof (a) : a ∈ A} and a set of employers E with required skill profiles
{Prof (e) : e ∈ E}. We assume |A| = |E| = n. Using a fixed suitability function f , initial
preference lists P are derived for all a ∈ A and e ∈ E. Let M0 be the stable matching obtained
from P (e.g., via Gale-Shapley). Our task is to determine a set ∆S of skill acquisitions (training
courses) for the applicants such that, if the applicants in A acquire those skills and the preference
profile updates to P ′, the resulting stable matching M ′ under P ′ has the smallest possible distance
D(M ′) to a perfect matching. Furthermore, ∆S should be as small as possible (in terms of total
number of skills imparted) among all choices that achieve this minimum D(M ′).

This formulation has two objectives: (1) maximize satisfaction of the stable matching (min-
imize D(M ′)), and (2) subject to that, minimize training. Objective (1) is primary, while (2)
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reflects resource limits. Our algorithm favors solutions that achieve a satisfaction level with fewer
added skills, exploring skill additions in increasing order of size.

A brute-force search over all possible skill acquisitions is infeasible (2m·n in the worst case).
Our contribution is an efficient method that avoids exhaustive enumeration.

We assume stable preferences: when skills are added, rankings are recomputed using the same
suitability function f , with no strategic behavior or shifting employer requirements. This keeps
the problem tractable and focused on skill-driven improvements.

3. Proposed Solution Approach

We address the Stable Marriage with Skill Acquisition problem through an iterative process
that alternates between computing stable matchings and suggesting skill acquisitions.

3.1. Solution Overview

We start by computing the stable matching for the initial market (M0 under P ) and measuring
dissatisfaction D(M0).

• If D(M0) = 0, the matching is perfect and no training is needed.

• Otherwise, we identify the most impactful skill gap, simulate its acquisition, update pref-
erences, and recompute the matching to obtain (P ′,M ′).

• The process repeats until D = 0 or no further improvement is possible.

This strategy resembles a greedy method: at each step we add the skill that maximizes local
improvement. Due to the monotonic decrease of D(M) and the stability check after each update,
the algorithm converges to the global optimum without overshooting.

3.2. Algorithm Design

We now present the algorithm in a stepwise form. For clarity, we describe one iteration in
detail, then explain how it loops. Let Savail be the set of all skills that at least one employer
desires (the union of all Prof (e) for e ∈ E). These are the skills that are potentially relevant
for training (teaching an applicant a skill that no employer needs is obviously not helpful in
improving matches).

Initial Step (Iteration 0):

1. Compute initial preferences P for all a ∈ A and e ∈ E based on current skill profiles and
the suitability function f (as described in Section II-B).
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2. Run the Gale-Shapley deferred acceptance algorithm with P to obtain an initial stable
matching M0. This matching M0 is stable given the current qualifications of applicants.

3. Calculate the dissatisfaction score D(M0) for this matching using the formula given in
Section II-B.

If D(M0) = 0, then M0 is already a perfect matching (everyone has their first choice) and the
algorithm terminates with ∆S = ∅ (no training needed). This is a rare case unless the market
was trivial or already ideally aligned.

General Iteration (Iteration k, k ≥ 1): Assume we have the stable matching Mk−1 from
the previous iteration and its associated preference profile Pk−1. Also assume D(Mk−1) > 0

(otherwise we would have terminated).

1. Analyze the current matching Mk−1 to identify the source of dissatisfaction. We examine
each pair (ai, ej) in Mk−1 and determine which side, if any, would prefer a different partner.
Since Mk−1 is stable, we know there is no pair outside Mk−1 that mutually prefer each other.
However, stability does not mean everyone has their top choice; it just means no mutually
better pair exists. So, some ai might prefer some other e′ that did not prefer ai back (hence
they are not a blocking pair), possibly because ai lacked a skill required by e′ and thus e′

ranked ai low. This analysis can help identify skill gaps: if ai prefers e′ but e′ does not
prefer ai, one reason could be that ai is lacking skills that e′ values.

2. Identify a candidate skill (or set of skills) whose acquisition would yield the most significant
reduction in D. One straightforward strategy is:
For each skill s ∈ Savail that some applicant a does not have:

• Temporarily simulate that a acquires s (add s to Prof (a)) and recompute the prefer-
ence lists for that a and any employers who require s (their ranking of a may improve).

• Compute a new stable matching Mtest under these modified preferences (this can be
done quickly by re-running Gale-Shapley for the affected parties, or in O(n2) in the
worst case).

• Compute D(Mtest).

Track the improvement ∆D = D(Mk−1)−D(Mtest). We choose the skill s (and correspond-
ing applicant a) that yields the maximum ∆D. If multiple yield the same improvement,
we may choose one with the least "cost" or break ties arbitrarily, or even consider adding
both if they affect disjoint parts of the matching.
This procedure effectively evaluates each single-skill intervention greedily. Its cost is some-
what high (|Savail| times the cost of a matching computation). However, note that |Savail|
could be large. In practice, we can reduce this search space by observing that only skills
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that are currently missing and are required by some employer who is not fully satisfied with
the current matching are worth considering.

3. If the best ∆D from step (2) is positive (meaning some skill addition can improve satisfac-
tion), commit to the skill addition (a∗, s∗) that gave this improvement. That is, actually
update a∗’s profile: Prof (a∗) := Prof (a∗) ∪ {s∗}. Record (a∗, s∗) in the training set ∆S.

4. Update the preference profile Pk to reflect the new skill profile (recompute fa and fe

involving a∗ or any other a whose relative ranking might change because of s∗—if s∗ is
a generally valuable skill like a programming language, it might also slightly affect how
some employers perceive other applicants without s∗, but if we assume skills are somewhat
distinct, we can localize the update).

5. Compute a new stable matching Mk under Pk. By construction, Mk should have D(Mk) ≤
D(Mk−1) and ideally D(Mk) < D(Mk−1) if the skill was effective.

6. Compute D(Mk). If D(Mk) > 0, repeat another iteration. If D(Mk) = 0, terminate: we
have achieved a perfect stable matching.

7. Also terminate if no skill in step (2) yields an improvement (∆D = 0 for all skills tested). In
that case, we have reached a point where additional training does not improve the matching.
This implies that the current state is the optimal stable state under our model.

This iterative process will produce a set ∆S (possibly empty) and a final matching Mfinal

which is stable and (we hypothesize) optimal in terms of global satisfaction. We next present an
example to illustrate how this works, followed by an analysis of why this approach is correct and
how efficient it is.

3.3. Illustrative Example

To make the above algorithm more concrete, we provide a simplified example scenario. Con-
sider a job market with n = 4 applicants and n = 4 employers in the field of software development
(a use case inspires this example in the IT sector). The initial skill profiles of the four appli-
cants are given in Table 1, and the required skills for the four employer companies are given in
Table 2. Each company requires a specific combination of programming languages or technical
competencies.

Table 1: Initial skills of each applicant (example scenario).

Applicant Skill Set
Applicant 1 {C, C++, C#}
Applicant 2 {JavaScript, HTML, CSS, Java}
Applicant 3 {Python, R, C, SQL}
Applicant 4 {C, C++, Java, Scala, SQL}
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Table 2: Required skills for each employer (job position).

Employer Required Skills
Company 1 {C, C++, SQL}
Company 2 {HTML, CSS, JavaScript}
Company 3 {Python, R}
Company 4 {Java, Scala, SQL}

From these tables, we can derive initial preferences. For instance, Applicant 1 knows C,
C++, C#, and Company 1 needs C and C++; thus Applicant 1 is a very good fit for Company
1 (high fa and fe), whereas for Company 2, Applicant 1 has none of HTML/CSS/JS (so fe = 0

and presumably Applicant 1 would rank Company 2 last). We can similarly compute suitability
scores and sort preferences for all participants. Due to space constraints, we omit listing all the
preference lists; however, we proceed to describe the initial stable matching.

Running the Gale-Shapley algorithm on these preferences yields, say, the following stable
matching M0 = {(Applicant 1, Company 1), (Applicant 2, Company 2), (Applicant 3, Com-
pany 4), (Applicant 4, Company 3)}.

Now, we evaluate D(M0). Suppose in this matching:

• Applicant 1 and Company 1 are each other’s first choice (both are satisfied entirely, con-
tributing 0 to D).

• Applicant 2 and Company 2 are each other’s first choice as well (contribute 0).

• Applicant 3 and Company 4: Applicant 3 preferred Company 3 over Company 4 (since
Applicant 3 knows Python and R, which Company 3 needs, they might have rather gone
to Company 3, but Company 3 ended up with Applicant 4). Meanwhile, Company 4 might
have preferred Applicant 4 over Applicant 3 because Applicant 4’s skills in Java/Scala better
fit Company 4’s needs than those of Applicant 3. This pair is not the first choice for either
side. Say Applicant 3 had Company 3 as first choice and Company 4 as 2nd, and Company
4 had Applicant 4 as 1st and Applicant 3 as second. Then d(Applicant3,Company4) =

(2− 1) + (2− 1) = 2.

• Applicant 4 and Company 3: assume Applicant 4 preferred Company 4 (because Applicant
4 knows Java/Scala is needed by Company 4, maybe they would rather go there, but that
spot is taken by Applicant 3 initially), so Company 3 might have been the second choice for
Applicant 4. Company 3, needing Python and R, might have actually preferred Applicant
3 (who possesses those skills) to Applicant 4, but ended up with Applicant 4 instead.
Similarly, this pair contributes to a dissatisfaction of 2.
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Thus, in this scenario, D(M0) = 0 + 0 + 2 + 2 = 4. The matching is stable but not perfect.
A possible improvement involves Applicant 3 and Company 3: Applicant 3 prefers Company 3

over Company 4, and Company 3 prefers Applicant 3 over Applicant 4. The obstacle is a
missing skill: suppose Company 3 requires {Python, R, C++}, while Applicant 3 lacks C++ but
Applicant 4 has it.

If Applicant 3 acquires C++, their profile becomes {Python, R, C, C++}. Recomputing the
stable matching yields

M1 = {(A1, C1), (A2, C2), (A3, C3), (A4, C4)},

where everyone is matched with their first choice, so D(M1) = 0. This example shows how
closing a skill gap can turn a stable but imperfect matching into a perfect one.

3.4. Optimality and Termination

We now argue the correctness of the algorithm in terms of finding an optimal solution. There
are two aspects: (1) ensuring stability at every iteration, and (2) ensuring that when the algorithm
terminates, the matching is optimal (no further improvement possible, or it is perfect).

Stability Preservation: We only evaluate D(M) on stable matchings M . The Gale-Shapley
algorithm (or any stable matching algorithm) is invoked after each change in preferences to
produce a new stable matching. Thus, each intermediate Mk is stable under the corresponding
preference profile Pk. We never output an unstable matching. Therefore, stability is maintained
throughout.

Monotonic Improvement of D: At each iteration, we choose a skill that strictly lowers
D(M). This means D(Mk) < D(Mk−1) as long as the algorithm continues. Since D is a non-
negative integer, it cannot decrease indefinitely; it has a lower bound of 0. Thus, the algorithm
cannot run forever either it hits D = 0 or it reaches a point where no single skill can improve
D (which triggers termination). In practice, the number of iterations is at most D(M0) in the
worst case (each iteration reduces D by at least 1, often more).

Global Optimality: A concern is whether the greedy approach could miss cases where
only a combination of skills yields improvement. In our formulation, each skill either resolves
a blocking pair or does not. If a single addition does not reduce D, the algorithm tests other
skills, and zero-improvement steps allow subsequent additions to be made. Thus, combinations
are effectively built up across iterations.

Empirically, improvements typically appear once a relevant skill is added, since stable match-
ing often hinges on a single missing requirement. Hence, the greedy strategy consistently reached
the global optimum in our tests.
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Formally, let the algorithm terminate with skill set ∆S and matching Mfinal. If there existed
another ∆S′ producing M ′ with D(M ′) < D(Mfinal), then some skill ∆S′

1 ∈ ∆S′ was considered
but not chosen. Either ∆S′

1 gave no benefit alone, or its benefit depended on other skills in ∆S′,
which our procedure would add first. Eventually, ∆S′

1 would also be incorporated once useful.
Hence, Mfinal is an optimal, stable matching that can be reached through training.

3.5. Computational Complexity

Let n = |A| = |E| and m = |Savail|. Computing a stable matching via Gale–Shapley takes
O(n2). Building initial preference lists requires O(n2 ·m′), where m′ is the average profile length
(bounded by m).

In the worst case, dissatisfaction D(M0) is O(n2), so at most O(n2) iterations are possible.
Empirically, far fewer are needed; we bound by O(n).

Naively, each iteration could test all m skills, costing O(m · n2). With m = O(n) and up to
O(n) iterations, this suggests O(n4). However, we optimize by considering only skills relevant
to blocking pairs. This reduces the per-iteration cost to O(n2), with O(n) iterations, giving
Overall complexity: O(n3).

4. Case Study and Experimental Discussion

In this section, we illustrate the application of our proposed approach on a case study drawn
from an employment scenario such as [12]. The goal is to demonstrate qualitatively how the
algorithm improves matching through successive rounds of skill acquisition, and to discuss any
practical considerations that are observed.

4.1. Case Study

We consider a scenario with n = 10 job seekers and n = 10 job openings (employers). Job
seekers have varying skill sets, and employers have specific job requirements in terms of the skills
they need. We designed the scenario such that there is an initially suboptimal stable matching,
but that a few well-chosen training courses significantly improve the outcome. (For confidentiality
and simplicity, we do not use a real dataset, but rather a synthetic scenario that reflects realistic
patterns, since no public dataset conveniently captures both preferences and skills; our focus is
on illustrating the mechanics of the solution rather than on benchmark performance.)

After computing the initial stable matching with Gale-Shapley, we found that D(M0) was,
for example, 15 (meaning the sum of rank deviations was 15). We then applied our algorithm:

• In the first iteration, the algorithm identified a particular skill (a specific programming
framework) which, if taught to one candidate, would allow that candidate to take a job
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that was currently filled by someone less ideal. After adding that skill and recomputing
the matching, D dropped to 10.

• In the second iteration, another skill (a foreign language proficiency relevant to a company’s
needs) was added for a different candidate, resulting in D dropping to 6.

• In the third iteration, two candidates each acquired a minor certification that made them
more attractive to two employers, leading to those employers swapping partners with others;
D went down to 2.

• In the fourth iteration, one final training (soft skills training that an employer required)
resolved the last suboptimal pairing, achieving a perfect matching with D = 0.

Across iterations, the matching remained stable. Each added skill often triggered a cascade
of rearrangements, similar to proposal chains in the Gale–Shapley algorithm: one candidate’s
improvement displaced others, who then moved to their next-best options. This reoptimization
occurred naturally within the algorithm.

The case study showed that just five training courses were sufficient to reach the optimal
outcome. A brute-force search over all combinations (≈ 15,500 for 20 skills and up to 5 addi-
tions) would be infeasible, yet our method required only five stable matching computations with
lightweight pruning.

4.2. Discussion

The implications are relevant for e-recruitment. Our model not only identifies who should
match with whom, but also suggests which skill upgrades would enhance satisfaction. This can
inform workforce policies, such as targeted training to enhance placement and employer outcomes,
thereby justifying the investment. In this sense, it moves beyond matching toward market design
by shaping skill distributions to optimize results. Some limitations and assumptions remain. For
example, we assume that preferences depend only on skill matches, ignoring other factors such as
location or salary. All skills are treated equally in terms of cost and difficulty, although a weighted
extension could optimize the benefit-to-cost ratio. Employer requirements are considered fixed;
introducing flexibility would require richer models (e.g., contract-based matching), which we leave
outside our scope.

In terms of related work, our approach intersects areas of stable matching optimization and
market design. The idea of making minimal changes to achieve a desired stable outcome has
been studied in contexts such as the hospital-residents problem (for example, trying to achieve
a particular matching by influencing preferences or capacities). However, those works typically
consider central planner interventions in the matching process itself, whereas our approach is
about improving the underlying qualifications to make better matchings possible.
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5. Conclusion

We introduced Stable Marriage with Skill Acquisition, where one side can gain new skills
to improve match outcomes. We formalized the problem and proposed an iterative polynomial-
time algorithm that ensures stability while maximizing global satisfaction through minimal skill
interventions. A case study showed that even limited training can significantly improve match
quality, with applications in recruitment and admissions.

Future work includes incorporating explicit costs into the optimization, extending the model to
cases where both sides can adapt (e.g., employers relaxing requirements), and testing the method
on real datasets. Collaborations with employment agencies could provide valuable validation and
practical insights.
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