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Abstract. The ability to automatically identify similar code fragments
within huge code repositories is crucial for software development and
maintenance tasks such as code reuse and debugging. Although several
solutions already exist to face this challenge, not many comparisons have
yet been established. For this reason, this study presents a comparative
analysis of existing and emerging techniques for code similarity search.
We benchmark these methods across diverse codebases, examining met-
rics such as indexing time, search speed, and the semantic relevance of
retrieved code fragments. Our research aims to provide software devel-
opers with practical information for performing efficient code similarity
searches, addressing the challenges associated with the increasing size of
codebases.
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1 Introduction

Managing large-scale software projects presents several challenges regarding the
efficacy and efficiency of the software development process. One significant issue
is the potential for duplicated effort [5]. Developers might discover similar code
used for comparable tasks as development teams expand and projects increase in
complexity. This redundancy wastes valuable time and resources, complicating
code maintenance [22]. Additionally, finding relevant code within a large code-
base can take much work. Software developers often spend considerable time
discovering the specific fragments to modify or extend. These challenges show a
need for solutions that maintain consistent code across large-scale projects [21].

Traditional code search methods, such as those using regular expressions,
have long been used for searching code fragments within repositories. However,
these methods primarily focus on literal string matching, often needing to catch
up in capturing the semantic similarity between code fragments. This limitation



becomes particularly clear in large codebases where different implementations of
similar functionalities may not share exact textual features, so the community
widely agrees on the need for more advanced solutions [20].

In recent times, new approaches that generate vector embeddings of code
fragments are more appropriate for matching code based on its underlying func-
tionality and not just its textual resemblance. These new approaches allow for
more accurate results and faster processing or retrieval of results from large code
repositories. Therefore, these techniques provide a novel capability to improve
efficiency and decrease redundancy. However, existing solutions still need to be
systematically compared. The present study fills this gap, and therefore, the
main contributions of this work are as follows:

— An overview of classical and emerging techniques for performing similarity
searches in large codebases.

— An empirical evaluation of these techniques with special interest in those
relying on semantic code representations rather than literal matching.

The rest of this work is structured fully to ensure a thorough understanding
of our research. Section 2 provides a detailed review of existing literature regard-
ing code similarity search. Section 3 presents the methodology usually employed
in code similarity search and how we will adapt it to perform our empirical eval-
uation. In Section 4, we perform the experimental setup and present the results
regarding the effectiveness and efficiency of existing approaches concerning sev-
eral benchmarks. Finally, we offer a summary of key findings and potential future
directions of this research, providing a reliable roadmap for further exploration.

2 State-of-the-Art

Code similarity search is highly beneficial in several practical scenarios. For ex-
ample, code reuse involves identifying already-written components, allowing de-
velopers to improve efficiency by integrating existing solutions into new projects
[14]. In debugging, these techniques can accelerate the process by finding code
that has addressed similar bugs or issues in the past, providing a practical ref-
erence for developers [11]. Moreover, such techniques facilitate the exploration
of different implementations and variations for code understanding, helping de-
velopers to identify diverse coding approaches and optimize their solutions [13].

The techniques for code similarity search within large codebases have evolved
significantly in recent years by integrating novel techniques [23]. Advanced ap-
proaches now go beyond traditional text-based searches to understand the se-
mantic content of code [?,?,1]. Techniques like summarization [10] and embed-
ding source code into high-dimensional vector spaces allow systems to assess
similarity based on the functionality rather than just textual similarity. Ap-
proaches like CodeBERT [4] and GraphCodeBERT [7] are examples of solutions
that learn contextual relationships within code, improving the ability to detect
similar patterns across diverse codebases. These strategies improve the search



accuracy in large repositories, enabling developers to find functionally similar
code fragments with different syntactic presentations [11].

Furthermore, the scalability of code similarity search systems has been a
critical focus, given the exponential growth of source code in recent years [?].
Systems are now designed to handle vast repositories efficiently, using technolo-
gies such as distributed computing, efficient indexing mechanisms, and other
tools [12]. One of the most widely used techniques is FAISS [3], which uses a
quantization-based approach to compress vectors and speed up the similarity
search process without significant losses in precision.

However, more approaches allow for the implementation of near-real-time
code search systems [2]. This is because solutions of this kind are crucial for
modern software development environments, where developers and even agents
need to reuse existing code. These advancements reduce the duplication of effort
and contribute to faster development cycles.

Unfortunately, very few empirical studies attempt to rigorously compare the
performance of the different emerging solutions for code similarity search. Our
work sheds some light on this and provides an overview of what can be expected
from these emerging solutions.

3 Problem Statement

Let C; and Cs be source code fragments in two different programming languages,
L1 and Lo, respectively. The code similarity problem involves defining a function
S(Cq,Cy) that quantifies their similarity.

Therefore, given C1 = {c11,¢1,2,...,¢1,n} and Co = {c21,¢22,...,C2am},
where ¢1; and ¢z ; are the atomic elements (such as tokens, statements, ab-
stract syntax tree nodes, etc.) of the code fragments in languages L1 and Lo,
respectively; the similarity function S(C1,Cs) is a mapping:

S:Cr, xCr, — [0,1]

where Cr, and Cp, are the sets of all possible code fragments L; and Lo,
respectively, and S(C1, Cy) = 1 indicates maximum similarity and S(Cy,C2) =0
indicates no similarity.

The function S may be defined based on various criteria, such as syntactic,
semantic, or structural likeness between C; and C5, and often involves complex
algorithms or machine learning models for its computation [21].

Several effective techniques and tools have been developed to tackle this
problem [19]. However, we are only interested in those able to vectorize the code
in order to study its scalability with techniques that include Annoy [24], Elas-
ticsearch [6], FAISS [3], HNSW [17], ScaNN [8], and Scikit-Learn-NN [9]. Each
technique and tool has some characteristics that suit different scenarios. How-
ever, comparing their performance in objective aspects has yet to be studied.
Figure 1 illustrates a top-k similarity search in a codebase, focusing on a specific



query code fragment labeled Q). Code Fragment. The diagram uses nodes repre-
senting different code fragments and edges to denote the similarity percentage
between the query fragment and these fragments.

Fragment AAA Fragment ABC

Sim. 76.15
Q. Code Fragment u Fragment CCD

Fragment CDD Fragment BBC

Fig. 1: Example of top-k similarity search in a codebase

To date, some of the most outstanding proposals in this area are listed below
in alphabetical order:

— Annoy (Approximate Nearest Neighbors Oh Yeah) [24] that performs ap-
proximate nearest-neighbor search. It builds forests of trees to partition the
space and allows for fast querying, even under very high-dimensional data.
Its main advantage is its ability to use memory-mapped files and efficiently
handle large-scale datasets.

— Elasticsearch [6] that, although primarily a search engine, can be used for
code similarity search through its tunable vector scoring features. It supports
text-based and vector-based searches, handling various forms of code and
plain language queries. It is particularly advantageous when combining code
similarity search with other search capabilities (e.g., text) is essential.

— FAISS (Facebook AI Similarity Search) [3] that is designed for efficient simi-
larity search of high-dimensional vectors. It is beneficial for searching spaces
with huge dimensionality, such as embeddings derived from source code. It
supports several indexing strategies that optimize speed and accuracy, mak-
ing it suitable for massive datasets.

— HNSW (Hierarchical Navigable Small World) [17] is an approximate nearest-
neighbor search algorithm that uses hierarchical graph structures to effi-
ciently search high-dimensional data. It is known for achieving good recall
rates, even in large-scale environments, which is beneficial for code similarity
searches where exact matches are not always necessary.

— ScaNN (Scalable Nearest Neighbors) [8] that improves the efficiency of nearest-
neighbor computation in high-dimensional spaces using a combination of
quantization and tree-based partitioning. It can be tailored to balance accu-
racy and speed, which is useful when dealing with large codebases.



— SKLNN (Scikit-learn Nearest Neighbors) [9] that supports various algo-
rithms for nearest-neighbor searches, each dealing with different sizes and
dimensionalities. While efficient for small to medium datasets, scalability is
assumed to be limited compared to specialized approaches when handling
high-dimensional data.

From now on, we will determine the aspects in which these approaches are
better suited, which could help give clues as to their use in software development.

4 Main Steps of the Code Similarity Search Process

Modern code similarity search involves several steps, starting with data prepro-
cessing. This includes collecting, cleaning, and normalizing code fragments. Next,
these code fragments are transformed into numerical representations through
vectorization techniques like TF-IDF [15], or CodeBERT [4]. These vectors are
then indexed to allow fast and accurate similarity searches in large code reposi-
tories [25]. When a user submits a query, it is also vectorized, and the index is
used to retrieve the most similar code fragments efficiently. A critical factor in
this search process is k, which determines the number of nearest neighbors re-
turned. Adjusting the k value helps provide results that meet the user’s specific
needs.

4.1 Data Preprocessing

Effective data preprocessing is crucial for setting up a code similarity search. Ini-
tially, code fragment collection can be performed by scraping code repositories,
utilizing public dataset compilations, or extracting them from internal project
archives. Once collected, code fragments often require cleaning and normaliza-
tion to ensure consistency and improve effectiveness. This may involve remov-
ing comments, normalizing variable names, or standardizing coding styles. Such
preprocessing steps help reduce noise and improve the focus on the functional
aspects of the code, which are essential for effective similarity searches.

4.2 Vectorization of Code Fragments

Although it is always possible to compare fragment-by-fragment similarity [23],
this usually scales poorly. Therefore, vector representations of the fragments are
used. Several techniques cover this phase, and the accuracy of the search system
depends on the choice. However, since this work focuses on performance rather
than accuracy, we will only focus on two techniques: a classical one (TF-IDF)
and an emerging one (CodeBERT).

— TF-IDF for representing code fragments presents the ability to assess the
importance of terms uniquely relevant to a particular fragment while pe-
nalizing standard terms [15]. When working with source code, terms (which



could be keywords, function names, or API calls) that appear frequently in
a fragment but are rare across other fragments are weighted higher, thus
capturing the uniqueness of the fragment. This feature makes TF-IDF par-
ticularly suited for distinguishing code fragments that implement specific
functionalities, making it a helpful approach for code similarity search [16].

— CodeBERT [4] is a language model designed to process source code auto-
matically. It is trained on a massive dataset of natural language and pro-
gramming language text, enabling it to perform very well at tasks like code
search, completion, and summarization. CodeBERT’s bimodal architecture
bridges the gap between natural language and code, making it useful for
developers who can work with abstract representations of code that are very
helpful in a wide range of programming-related tasks.

4.3 Indexing

The need for efficient and scalable similarity searches in large datasets drives the
choice of a good indexing strategy. This strategy must be optimized for fast sim-
ilarity computations over large sets of high-dimensional vectors, making it ideal
for handling the vectorized form of code fragments. Then, some kind of distance
(e.g., euclidean, cosine, etc.) is used to calculate the similarity between vectors,
providing an efficient way to assess the likeness of code fragments based on their
vector representations. This setup is particularly effective in environments where
fast query responses are crucial, and the dataset size can be huge.

4.4 Similarity Search

During the similarity search process, query code fragments are first vectorized
using the same scheme applied during the preprocessing stage. These vectorized
forms are fed into an index to find similar code fragments. In this context,
the parameter k refers to the number of nearest neighbors considered in the
search results. Adjusting k£ can impact the outcome; a larger k£ might include
more potentially relevant results but also increase the noise, whereas a smaller k
focuses on the most similar fragments but may miss some relevant matches. The
choice of k£ thus needs to be balanced based on the specific needs of the search
process.

5 Evaluation

In our code similarity search experiments, we have investigated the performance
of various techniques and tools under different scenarios. We measured indexing
time to assess the efficiency of creating searchable representations of codebases.
Accuracy has been evaluated using traditional TF-IDF and the more recent
CodeBERT model based on deep learning.

To assess search performance, we have conducted queries on codebases of
increasing size: 10,000, 100,000, and 1,000,000 code fragments. We have measured



the time taken to retrieve relevant results for each query, providing insights into
the scalability of different methods and assessing the efficiency of the different
approaches under different workloads.

5.1 Assessment Methodology

A qualitative assessment can provide examples of results showcasing the system’s
ability to find conceptually similar codes. For instance, a search query for a sort-
ing algorithm could return various implementations of quicksort or mergesort,
demonstrating the system’s capability to recognize a range of related algorithms.
However, this assessment is currently not possible due to the lack of a dataset
that has such information annotated, so for the time being, only a quantitative
comparison is possible.

Traditionally, code similarity search strategies are compared against simple
baselines like keyword searches or basic code representations. However, mod-
ern techniques often use vector representations of code, which capture seman-
tic meaning better than keywords. This study compares different vector-based
strategies to determine the most effective and efficient way to improve code
representation.

5.2 Experimental Setup

In this study, we use the dataset of the BigCloneBench! to perform code simi-
larity search. This dataset is a valuable resource for addressing the challenge of
identifying duplicate code. Comprising diverse programming languages sourced
from real-world software and student projects, it provides a realistic testing
ground for evaluating code similarity search strategies. Due to its nature, Big-
CloneBench is frequently used in solutions to improve code maintainability.

We will always look for the three most similar code fragments. Furthermore,
for the parameters of the different strategies, we rely on their default settings,
ie.

— Annoy: Angular distance, 10 trees

— FElasticsearch: SVD components 4096, Cosine Similarity

— FAISS: FlatL2 index

— HNSW: L2 distance, ef_construction: 200, M: 16

— ScaNN: L2 normalization, Number of Leaves: 10, Anisotropic Quantization
Threshold: 0.2

— Scikit-Learn NN: Algorithm K-D Tree

Moreover, the experiments have been performed in an isolated machine on
Windows 11 running over an 11th Gen Intel(R) Core(TM) i7-1185G7 at 3.00GHz.
In any case, the reported results are always the result of a relative comparison
performed on the same hardware.

! https://github.com/microsoft /CodeXGLUE /tree/main/Code-Code/Clone-
detection-BigCloneBench



5.3 Performance Comparison

We proceed now to show the experiments performed to establish the performance
comparison. These experiments have been designed to evaluate and benchmark
the accuracy, and scalability of the different search strategies under various con-
ditions regarding the volume of data to be handled.

Indexing Time Figure 2 presents a comparative summary of the time required
to index code fragments using various approaches for different dataset sizes: 10k,
100k, and 1M code fragments. The table provides an overview of the performance
of the six different indexing approaches under consideration in this study.
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Fig. 2: Performance comparison of different methods for 10k, 100k, and 1M code
fragments

All techniques show an expected increase in indexing time as the dataset
size grows. The values for each technique suggest varying degrees of scalability.
However, FAISS, which shows a relatively smaller increase in time, might indicate
better scalability than others in the long run. This is deduced from the lower
slope inclination, which will cause it to increase at a lower rate than the rest.

It is also necessary to note that all indexes (except Elasticsearch) are kept in
the main memory. Only Elasticsearch, as a complete DBMS, works directly on
optimized disk files and is consolidated in secondary memory.

Accuracy Code similarity search aims to find duplicate or similar code frag-
ments but involves a trade-off between accuracy and efficiency. The chosen algo-
rithm and parameters can affect the results. Exact matching ensures high pre-
cision but may overlook functionally similar code with different structures. In



contrast, approximate methods like token-based or semantic analysis cover more
ground but can produce false positives. The quality and relevance of training
data also affect the accuracy of machine learning-based approaches.

Figure 3 illustrates the relationship between the number of code fragments
and accuracy using TF-IDF over FAISS. The x-axis represents the number of
code fragments on a logarithmic scale, and the y-axis represents the accuracy.
The figure shows that the accuracy tends to decrease as the number of code frag-
ments increases. This downward trend suggests a negative correlation between
the number of code fragments and the accuracy in this context.
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Fig. 3: Search accuracy using TF-IDF

Figure 4 illustrates the relationship between the number of code fragments
and accuracy using CodeBERT over FAISS. The x-axis represents the number
of code fragments on a logarithmic scale, and the y-axis represents the accuracy.
The figure shows that the accuracy remains relatively stable as the number
of code fragments increases. There is a slight decrease in accuracy when the
number of code fragments reaches 1,000,000, but overall, the accuracy stays
high, indicating a good performance across different scales.

However, this work does not seek to compare semantic similarity models.
Previous studies already exist and even show that some variants of CodeBERT
[7] and an ensemble of simple models for assessing semantic similarity tend to
perform well [18].

Search Performance Search performance refers to how fast a given approach
can compare source code fragments. Faster performance is crucial for real-time
or large-scale applications. We have studied this performance for 10k, 100k, and
1M code fragments. Times were measured five times, and the median value was
reported.
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Fig. 4: Search accuracy using CodeBERT

Experiment 1: 10,000 items. Figure 5 shows us that the query perfor-
mance of the different approaches varies significantly. The comparison shows
how some approaches maintain lower search times consistently, which is critical
for applications requiring efficient code retrieval. This is important to avoid po-
tential bottlenecks in systems where fast code retrieval is essential, such as in
integrated development environments or real-time code analysis tools.
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Fig. 5: Search performance for a codebase of 10,000 items
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Experiment 2: 100,000 items. Figure 6 shows us that the query perfor-
mance of different approaches varies again. The performance trend observed with
10,000 items continues here, with specific approaches (Elasticsearch, SKLNN,
FAISS) demonstrating better scalability as the dataset size increases. So, they
could be good candidates when choosing the right strategy for large-scale data,
assuring that query performance remains efficient even as data volume grows.
Therefore, we can see which methods could be suitable for handling expansive
datasets to guarantee reliable performance in large-scale applications.
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Fig. 6: Search performance for a codebase of 100,000 items

Experiment 3: 1,000,000 items. Figure 7 shows us again that the query
performance of the different approaches varies a lot. This figure shows us the
importance of choosing the right approach for large-scale applications, as the dif-
ference in search times can be substantial. Therefore, it seems clear that selecting
an efficient method is crucial for maintaining stable performance in systems with
large datasets. The rationale behind opting for the right solution is to improve
system responsiveness and user satisfaction even as the code volume grows.
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Search Performance Comparison for 1,000,000 code fragments
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Fig. 7: Search performance for a codebase of 1,000,000 items

5.4 Summary of Results

The results of our experiments reveal some significant findings that could be
interesting when guiding developers and researchers in selecting the most suitable
strategies for their specific use cases and requirements regarding code similarity
search. The following facts can be extracted from these results:

— CodeBERT is the best strategy to maximize accuracy. These results confirm
the findings that have also been obtained in the frame of several previous
research studies [7,19].

— Elasticsearch produces the best results in terms of search performance but
at the cost of having the worst indexing time.

— The approach with the best scalability prospects, in the long run, is FAISS,
and in the short term, is SKLNN.

— Most approaches present good performance, making them viable candidates
for integration into production systems, although Elasticsearch is recom-
mended to consolidate the index in secondary memory.

— The results of SKLNN are positively surprising since it is part of the general-
purpose Scikit-learn library, which is very popular in the software develop-
ment world. In fact, for small samples, it has very good indexing and search
speed times.
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6 Discussion

Code similarity search helps developers identify algorithm variations, aiding in
code understanding and optimization. Identifying similar code fragments across
different projects or within the same codebase facilitates developers’ efficient
search for duplicated code fragments, which is crucial for improving their projects
maintainability.

The process of vectorizing code enables code similarity search to effectively
capture the essence of the code, regardless of varying structures and styles. Vec-
torization transforms code into a numerical representation, allowing the different
strategies for code similarity search to analyze and compare code fragments more
effectively.

However, despite their advantages, code similarity search strategies face chal-
lenges, such as complex syntax and dependencies in programming languages. Ef-
fective vectorization must capture both syntactic and semantic aspects of code,
which can be difficult due to varying structures and styles. Furthermore, vocab-
ulary mismatch is another issue. Different naming conventions and synonyms
can lead to inaccurate search results.

We have seen that as codebases grow, search performance can degrade. Ef-
ficient indexing and retrieval mechanisms are necessary to maintain high per-
formance in large-scale applications. Addressing these limitations is crucial to
improving code similarity search. Advances in this context offer promise in over-
coming some challenges by developing models that better understand code con-
text and semantics. Standardized naming conventions and coding practices could
also reduce vocabulary mismatches and improve search accuracy.

b

7 Conclusion

This study has evaluated existing code similarity search techniques, focusing on
their effectiveness and scalability in real-world scenarios. Our benchmark results
demonstrate that the studied methods are suitable for performing code simi-
larity searches, although with some objections. The key idea is capturing the
functional essence of the code beyond mere textual similarity, improving the
accuracy of search results within large codebases. This approach has proven in-
valuable for developers, enabling them to efficiently identify functionally similar
but syntactically diverse code fragments.

We have established a comparative analysis to identify the best existing ap-
proaches to working in a context where codebases grow rapidly. Our experiments
show that most approaches offer good average performance. However, some are
much better than the rest in some aspects related to the results indexation,
search speed, and semantic relevance.

Furthermore, we have identified several areas for future research. Developing
more efficient indexing techniques could improve the scalability of code similarity
search, particularly for large codebases. Exploring novel approaches to capture
the semantic meaning of code could improve the relevance of retrieved code
fragments and optimize the search process.
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