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ABSTRACT
The problem of ontology matching consists of finding the semantic
correspondences between two ontologies that, although belonging
to the same domain, have been developed separately. Matching
methods are of great importance since they allow us to find the
pivot points from which an automatic data integration process
can be established. Unlike the most recent developments based
on deep learning, this study presents our research on the develop-
ment of new methods for ontology matching that are accurate and
interpretable at the same time. For this purpose, we rely on a sym-
bolic regression model specifically trained to find the mathematical
expression that can solve the ground truth accurately, with the pos-
sibility of being understood by a human operator and forcing the
processor to consume as little energy as possible. The experimental
evaluation results show that our approach seems to be promising.

CCS CONCEPTS
• Information systems → Expert systems; Recommender sys-
tems; • Information Systems→ Data Mining.
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1 INTRODUCTION
Ontology matching is a field for finding semantic correspondences
between ontologies belonging to the same domain but developed
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separately. Despite its importance in many computer-related dis-
ciplines, several problems are currently associated with systems
for automatically matching ontologies. For example, the existing
program interfaces are not very attractive. The existing matching
systems do not allow the discovery of complex correspondences.
Most of the existing semantic similarity measures to discover simi-
lar entities across ontologies cannot be aggregated easily.

In recent years, we have witnessed an explosion in the number
of new techniques and tools for ontology matching, filling these
gaps to overcome these problems. These techniques and tools have
been a leap in quality compared to the state-of-the-art because they
have solved many issues related to the accuracy, recall, aggrega-
tion, speed of computation, etc. However, there are still some open
issues to solve the problem almost definitively. In this paper, we
address one of these open issues: interpretability, i.e., the potential
ability of a human operator to understand a matching model that
has been derived analytically using some computational learning
technique.

Biomedical ontology matching, sometimes also called biomed-
ical ontology alignment, consists of finding the semantic corre-
spondences between entities belonging to two ontologies from the
biomedical domain that have been developed independently by
different teams. One of the main characteristics of this domain
is that biomedical ontologies are usually considered large when
most state-of-the-art approaches are merely applicable for small-
scale ontologies. This usually means that the effectiveness of the
existing approaches decreases for large ontologies. This makes our
challenge slightly different from the usual one, matching many
small ontologies (called holistic matching). Furthermore, there is
an additional problem when determining these approaches because
reference correspondences are unknown in advance, so domain ex-
perts must assess samples of the mappings proposed and returned
results.

Due to the decentralized nature of biomedical research, the prob-
lem is that there usually exist multiple ontologies from overlapped
application domains or even within the same domain. In order to
establish interoperability between biomedical applications that use
different but related ontologies, ontology matching has been pro-
posed as an effective way of handling the semantic heterogeneity
problem. It is typically valuable for some data management ap-
plications, such as information integration and merging as well
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as distributed query processing. Some ontology matching tech-
niques based on machine learning have recently obtained remark-
able results in the biomedical domain. However, the problem is
that machine learning methods rely heavily on the availability of
high-quality labeled data.

Moreover, if we look exclusively at the latest techniques based
on deep learning, we find another problem: The solutions often
behave like black boxes that users find difficult to trust. The reason
is that solutions based on deep neural networks can accept input
and provide an output but often do not allow the human operator
to understand what happened inside the model before arriving at
that output. This is a severely limiting factor that hinders automatic
measures for ontology alignment in the biomedical field.

Today, many applications require matching biomedical ontolo-
gies; we have focused on addressing this challenge by using highly
interpretable matching methods based on the concept of symbolic
regression. In this way, the significant contributions of this work
can be summarized as follows:

(1) We propose, for the first time, a method to match large
biomedical ontologies based on the concept of symbolic
regression intended to facilitate the interpretability of the
resulting matching models.

(2) We empirically evaluate this newmethod using themost pop-
ular benchmark datasets in the biomedical domain and offer
a comparison with the most prominent ontology matching
tools.

The rest of this work is structured in the following way: Section
2 describes the state-of-the-art regarding ontology matching in
the biomedical field. Section 3 presents our technical contribution.
Section 4 presents the results we have achieved after performing
several experiments and compares our results with other prominent
approaches. Finally, we remark on the strengths and flaws of our
proposal and discuss the future work.

2 STATE-OF-THE-ART
One of the earliest studies to formalize this problemwas [13], which
addressed how ontology matching systems may be created through
a trade-off between precision and recall. These authors were the
first to propose that instead of using an ontology matching algo-
rithm, machine learning models should be used to generate the
most efficient and effective ensemble of matchers. From this sem-
inal work, the study turned to the proposal of machine learning
methods to aggregate the fundamental matchers, with GAOM [23]
and GOAL [15, 16] being the first studies being able to construct the
ensemble using genetic algorithms. The fundamental notion was
that it might optimize the precision, recall, or combination of the
two. In [17], a survey on ontology matching was presented with em-
phasis on the aggregation methods used by the different proposals
existing to date, as well as the significant differences between the
techniques for matcher combination, matcher self-tuning, and meta-
matching.

It is important to remark that dealing with large ontologies is
a problem that entails a higher complexity than usual. The many
homonyms and relationships that only apply in narrow subject
domains will lead to many incorrect matches. For general use cases,
methods based on the exploitation of embeddings can yield better

results. Nowadays, one of the most well-known approaches using
embeddings is that of Kolyvakis et al. [11]. The authors propose that
ontological term vectors based on information derived from textual
corpora and other resources be used to solve the problem. Wu et
al. have also lately used Siamese networks to outperform the state-
of-the-art in specific instances [24]. Both approaches, however, are
based on deep learning. This implies that they have significant
interpretability issues.

One of the areas where the effective and efficient use of on-
tologies can significantly impact is the biological field. Biomedical
ontologies are a rich source of information that can help developers
create applications for biomedical data annotation, knowledge dis-
covery, decision making, and data interoperability. In this scenario,
mappings between the entities corresponding to each ontology
are critical for interoperability between data sources. However, se-
mantic heterogeneity is a critical issue that frequently inhibits the
construction of these mappings. As a result, several solutions have
been presented [7, 9, 12, 21, 25].

Regarding the sources to be used, some biomedical ontologies
such as SNOMED [5], the National Cancer Institute Thesaurus
(NCI) [3], and the Foundational Model of Anatomy (FMA) [19] have
become quite popular and are often used in various solutions and
systems. However, to date, most proposals for matching biomedical
ontologies have focused mainly on feature engineering. Features
include terminological, structural, extensional (instances of a given
concept), and external resources. Therefore, the quality of the re-
sults has been restricted to small scenarios [10]. There have been
several attempts to establish the biomedical ontology matching
problem as a binary classification problem, i.e., a classifier could be
trained with a sample of positive and negative examples provided
by that user to identify the cases once it is put into production
correctly. However, the results cannot yet be considered optimal. In
recent times, deep learning-based solutions seem to have succeeded
in overcoming almost all traditional limitations, including outstand-
ing performance in terms of accuracy in a wide range of scenarios
[11, 24]. This is due to a large number of homonyms and associa-
tions that only apply to specific subject domains, which will result
in a large number of false matches. It is widely assumed that in most
applications, embedding-based matching will produce better results.
However, there are still some gaps, such as the interpretability of
the resulting model to be addressed.

This work presents the problem as a challenge of getting a sym-
bolic mathematical expression to identify the relationship between
defined input and output variables. The mathematical expression
is allowed to be flexible without being restricted to a particular
structure. In our case, the output is the ontology matching score
associated with a pair of entities, while the input variables are val-
ues coming from highly interpretable basic matching algorithms
already proposed. In this way, the search space of candidate expres-
sions is really huge. Therefore, it is a much more difficult task than
other kinds of regression, such as linear or polynomial regression.
The great advantage is that the learned model is a mathematical
equation that can be examined and interpreted in the context of the
given situation. That resulting equation is not only chosen to fit the
input data but provides a functional explanation of the resulting
model.
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3 MATCHING ONTOLOGIES USING
SYMBOLIC REGRESSION

One of the most well-known applications of ontology technologies
is the domain of life sciences. Ontologies are regulated terminolo-
gies that allow people and machines to understand the meaning
of data legibly. In this way, one of the primary goals of biomedical
ontologies is to express classes of items relevant to the ontology’s
development context. However, in addition to the names associated
with these classes, the relationships between the various classes
are also meaningful. Let us see some definitions of our approach.

3.1 Definitions and problem formulation
Definition 1 (Similarity Function). A similarity function sf is a
function s f : µ1 × µ2 7→ R that associates the similarity of two input
pieces of information µ1 and µ2 to a similarity score sc ∈ ℜ in the
range [0, 1].

So that a score of 0 stands for absolute inequality and 1 for equality
of the pieces of information µ1 and µ2 being compared.

Definition 2 (Ontology Matching). An ontology matching om is
a function om : O1 ×O2

sm
→ A that associates two input ontologiesO1

and O2 to an alignment A using a similarity function sf.

Definition 3 (Ontology Alignment). An ontology alignment oa is
a set {t ,MD}, whereby t is a set of tuples in the form {(id, e, e ′,n,R)},
being id a unique identifier, e and e ′ are entities belonging to two
different ontologies, R is the relation of correspondence between these
entities, and n is a real number between 0 and 1 that representing the
plausibility that R may be true. The entities that can be related are
the classes or the relationships of the ontologies. Furthermore, MD is
some metadata related to the process for statistical purposes.

Definition 4 (Alignment Evaluation). An alignment evaluation
ae is a function ae : A × AR 7→ precision ∈ ℜ ∈ [0, 1] × recall ∈
ℜ ∈ [0, 1] that associates an alignment A and a reference AR to two
real numbers stating the precision, recall of A in relation to AR .

Definition 5 (Meta-Matching Function).AMeta-Matching Func-
tionmmf is a functionmmf : SC 7→ ℜ that defines how previously
calculated similarity score sci ∈ SC . The result is an optimized simi-
larity score sco ∈ ℜ. We call optimized similarity score to the best
possible similarity score.

In our case, the meta-matching function will be built using sym-
bolic regression via genetic programming. Genetic programming
uses evolutionary strategies to search for one good model from a
vast space of solutions representing all the mathematical expres-
sions dealing with the input data. Therefore, evolutionary strategies
are a learning algorithm that combines two good individuals to
create a superior individual. Evolutionary strategies are helpful
because they do not use a straightforward optimization approach,
allowing for a wide range of outcomes. Furthermore, the resulting
model frequently comes up with innovative solutions that provide
new insights into the problem.

3.2 Symbolic Regression
Symbolic regression is a kind of regression analysis in which the
model that best fits a given input dataset is found by searching the
entire space of all conceivable mathematical expressions. Symbolic
regression has already been utilized to solve specific function iden-
tification and learning problems in the past. This is primarily owing
to the concept of Abstract Syntax Tree (AST), which allows iden-
tifying any linear or non-linear function from previously solved
cases.

Furthermore, the resulting model is immediately exportable in
the form of an algorithm to several programming languages, making
it easier for a human operator to comprehend and transfer to other
situations of a similar nature, as we have already shown in [18].
This AST can evolve thanks to an underlying evolutionary strategy.
The final result can be calculated by evaluating each node and then
performing the parent node operation on the child nodes.

Our goal is for AST to evolve to accommodate an expression
that perfectly fits the input-output pairs provided as a training
dataset to use that mathematical expression to validate it over a test
dataset. One of the additional advantages of symbolic regression
models is that they also allow us to optimize the precedence of
operators, which gives even more computing power to the model.
Also, not letting the tree grow too much helps us avoid over-fitting
problems. This is mainly since simple models behave better in terms
of generalization of solutions than complex ones.

To do that, our goal is to aggregate existing matching methods
strategically. Aggregation methods are prevalent in various areas
of computing and are often used in production environments, as
they allow to blur the errors that a method makes between a set of
methods that usually work well most of the time, e.g., [14, 20, 22].
In rare cases where all the methods might simultaneously make the
same mistake, the aggregation methods lose their effectiveness. In
this way, some of the most common aggregation operators are the
arithmetical mean, the median, and the geometric mean. However,
their aggregation strategy is short-sighted since it cannot model
an adequate interaction between the input similarity measures.

Last but not least, we know that there are three levels of model
interpretability: Application-level (only an expert can understand
the model), User level (anyone should be able to understand the
model), Functional level (the model is expressed as a function). Our
approach is the first, to the best of our knowledge, to reach the
functional level [6].

4 EXPERIMENTAL EVALUATION
In this section, we present the empirical study to which we have
subjected our approach. We have divided the section into the fol-
lowing subsections: We first describe the nature of the datasets we
are working with. Secondly, we explain the metrics that will be
used to assess the results obtained. Third, we report the configura-
tion we have used to obtain the results. Fourth, we provide the raw
results obtained by our approach and rigorous comparison with
state-of-the-art. Fifth, we describe how our approach can model
a trade-off between accuracy and interpretability properly. Fur-
thermore, finally, we discuss the highlights of the whole empirical
study.
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4.1 Datasets
The datasets used in ontology matching are generally based on
large-scale open-source data sources. In this work, we have focused
on ontology from the biomedical domain as already reported by
Kolyvakis et al. [11]. We consider here the foundational Model of
Anatomy (FMA), which represents the phenotypic structure of the
human body [19]. The Adult Mouse Anatomical Dictionary (MA)
represents the anatomy of an adult mouse [8]. The NCI Thesaurus
(NCI) provides standard terminology for cancer [3] and its anatomy
subdomain describe naturally occurring human biological struc-
tures. Furthermore, finally, the SNOMED collection (SNOMED)
represents medical nomenclature to be used in clinical reports [5].

4.2 Evaluation criteria
To evaluate the results of our empirical study, we will use the
classical criteria of an information retrieval problem, as do most
studies in this context. For this, we will use the traditional metrics
based on precision, recall, and f-measure. Precision is the fraction of
retrieved mappings that are relevant to the query. The recall is the
fraction of the relevant mappings that are successfully retrieved.
F-measure combines precision and recall is the harmonic mean
of precision and recall. It is widely assumed that accuracy can be
optimized at the expense of recall and vice versa. For this reason, it
is convenient to report the two measures together.

4.3 Empirical study
To assess the performance of our approach, we also analyzed some
of the best proposals in this context. This list is based on and
expands the compilation made by [24]. In fact, we collect all its
variants based on Deep Learning, in addition to the following so-
lutions: AML [7], DOME [21], FCAMapKG [25], LogMapBio[9],
and POMAP++ [12]. In this way, Table 1 shows the results for the
MA-NCI that contains 1489 positives from 9 million possible corre-
spondences. Please note that the ground truth for this experiment
is based on the work of Bodenreider et al. [2].

Table 2 shows the results for the benchmark FMA-NCI. The
ground truth for this experiment is based on the UMLS Metathe-
saurus [1] and it contains 2504 positive cases from 24 million possi-
ble correspondences.

Table 3 shows the results for the FMA-SNOMED benchmark
dataset. Once again, the ground truth for this experiment is based
on the UMLS Metathesaurus [1]. It has 7774 positives from 136
million possible correspondences.

4.4 Modeling trade-off between accuracy and
interpretability

As a demonstration of what is possible in our solution but not
possible in others, we model a trade-off between accuracy and
interpretability. Since both are considered orthogonal objectives,
we can formulate the problem as a bi-objective optimization. In such
a problem, we look for the Pareto non-dominated solution front
that solves the problem in the best way (e.g., maximum f-measure
and interpretability simultaneously). In our case, interpretability
is given by a smaller number of items in the resulting AST (and
thus the equation). By non-dominated solutions, we mean solutions
that can no longer improve one of the two objectives except at the

expense of the other. All the solution fronts have been obtained with
the multi-objective NSGA-II [4] algorithm which is considered a
reference in the field of optimization. In this way, Figure 1 shows us
the Pareto front of non-dominated solutions obtained when solving
the MA-NCI dataset.
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Figure 1: Pareto front of non-dominated solutions obtained
when solving the MA-NCI dataset

Figure 2 shows us the Pareto front of non-dominated solutions
obtained when solving the FMA-NCI dataset.
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Figure 2: Pareto front of non-dominated solutions obtained
when solving the FMA-NCI dataset

Finally, Figure 3 shows us the Pareto front of non-dominated
solutions obtained when solving the FMA-SNOMED dataset.

These experiments make it possible to appreciate a great novelty
compared to existing solutions to represent a trade-off between
accuracy and interpretability. This means that human operators
can have a list of options in front of them at all times, allowing
them to choose the configuration that best matches the problem
at hand. This is the first time this option has been made available
in this domain to the best of our knowledge. The reason for this
is that, whereas matching approaches have provided users with
a trade-off between precision and recall, we are unaware of any
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Method precision recall f-measure Interpretability
OM-TD (TF-IDF) 0.900 0.648 0.785 No
OM-TD (LSTM) 0.968 0.704 0.815 No
OM-TD (TBERT) 0.977 0.702 0.817 No

OM (LSTM + SGAT) 0.975 0.717 0.826 No
OM (TBERT + GraphSAGE) 0.954 0.529 0.681 No

OM (TBERT + TransE) 0.890 0.502 0.642 No
OM (DAEOM) 0.981 0.748 0.849 No

DOME 0.993 0.615 0.760 No
AML 0.950 0.936 0.943 Application Level

FCAMapKG 0.996 0.631 0.772 Application Level
LogMapBio 0.872 0.925 0.898 Application Level
POMAP++ 0.919 0.877 0.897 Application Level

Our approach 0.962 0.873 0.916 Functional Level
Table 1: Results obtained for the MA-NCI

Method precision recall f-measure Interpretability
OM-TD (TF-IDF) 0.969 0.734 0.835 No
OM-TD (LSTM) 0.958 0.871 0.912 No
OM-TD (TBERT) 0.966 0.878 0.920 No

OM (LSTM + SGAT) 0.971 0.879 0.923 No
OM (TBERT + GraphSAGE) 0.981 0.738 0.843 No

OM (TBERT + TransE) 0.961 0.558 0.706 No
OM (DAEOM) 0.989 0.888 0.936 No

DOME 0.985 0.764 0.861 No
AML 0.958 0.910 0.933 Application Level

FCAMapKG 0.967 0.817 0.886 Application Level
LogMapBio 0.919 0.912 0.915 Application Level
POMAP++ 0.979 0.814 0.889 Application Level

Our approach 0.907 0.848 0.878 Functional Level
Table 2: Results obtained for the FMA-NCI

Method precision recall f-measure Interpretability
OM-TD (TF-IDF) 0.941 0.613 0.742 No
OM-TD (LSTM) 0.972 0.687 0.805 No
OM-TD (TBERT) 0.977 0.715 0.826 No

OM (LSTM + SGAT) 0.981 0.732 0.838 No
OM (TBERT + GraphSAGE) 0.913 0.677 0.777 No

OM (TBERT + TransE) 0.722 0.506 0.595 No
OM (DAEOM) 0.990 0.791 0.879 No

DOME 0.988 0.198 0.330 No
AML 0.923 0.762 0.835 Application Level

FCAMapKG 0.973 0.222 0.362 Application Level
LogMapBio 0.931 0.703 0.801 Application Level
POMAP++ 0.906 0.260 0.404 Application Level

Our approach 0.907 0.770 0.832 Functional Level
Table 3: Results obtained for the FMA-SNOMED

existing methodology to represent a trade-off between f-measure
and interpretability.

5 CONCLUSIONS AND FUTUREWORK
In a time where methods for big data analysis are essential players
in biomedical research, the need for people to trust the data-driven
systems they use for their daily operations is crucial. However, in
recent times, the field of ontology matching, particularly biomedical
ontology matching, has been involved in a race to improve accuracy
over and over again. This issue has caused to pay little attention to
the interpretability of the increasingly accurate solutions.

When it comes to matching biomedical ontologies, our method
produces acceptable results. Moreover, new matcher combinations
can be tested based on the results. Even though only a few have been
chosen, our method allows us to aggregate any matcher without
degrading performance. In this way, it may make biological data
sharing and integration across heterogeneous sources easier and
accelerate the creation of biomedical data repositories applications.
Future work, aside from looking for ways to improve accuracy,
interpretability, and model good mixes, also needs to design novel
solutions tailored to the user’s preferences. It is widely assumed that
more research in this area is required before the idea of replicating
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Figure 3: Pareto front of non-dominated solutions obtained
when solving the FMA-SNOMED dataset

the human operator when dealing with semantic relations becomes
a reality.
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