
Top-k matching queries for filter-based profile

matching in knowledge bases⋆

Alejandra Lorena Paoletti, Jorge Martinez-Gil, and Klaus-Dieter Schewe

Software Competence Center Hagenberg, Hagenberg, Austria
{Lorena.Paoletti, Jorge.Martinez-Gil, kd.schewe}@scch.at

Abstract. Finding the best matching job offers for a candidate profile
or, the best candidates profiles for a particular job offer, respectively
constitutes the most common and most relevant type of queries in the
Human Resources sector. This technically requires to investigate top-k
queries on top of knowledge bases and relational databases. We propose
in this paper a top-k query algorithm on relational databases able to
produce effective and efficient results. The approach is to consider the
partial order of matching relations between jobs and candidates profiles
together with an efficient design of the data involved. In particular, the
focus on a single relation, the matching relation, is crucial to achieve the
expectations.

1 Introduction

The accurate matching of job applicants to position descriptions and vice versa is
of central importance in the Human Resources (HR) domain. The development
of data or knowledge bases (KB) and databases to which job descriptions and
curricula vitae (CV) can be uploaded and which can be queried effectively and
efficiently by both, employers and job seekers is of high importance. Finding the
best matching job offers for a candidate profile or, the best candidate profiles to a
particular job offer respectively, constitute the most common and most relevant
type of query, which technically requires to investigate top-k queries on top of
knowledge bases and relational databases.

A profile describes a set of skills either, a person posses detailed in form of
a CV or, described in a job advertisement through the job description. Profile
matching concerns to measure how well a given profile matches a requested pro-
file. Although, profile matching is not only concerned to the Human Resources

⋆ The research reported in this paper has been supported by the Austrian Ministry
for Transport, Innovation and Technology, the Federal Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of the COMET center
SCCH.
The research reported in this paper was supported by the Austrian
Forschungsförderungsgesellschaft (FFG) for the Bridge project “Accurate and
Efficient Profile Matching in Knowledge Bases” (ACEPROM) under contract
841284.

sector but a wide range of other application areas, real state domain, matching
system configurations to requirements specifications, etc. The research in this
paper is in line with a previous work [5] where an approach on improving profile
matching in the HR sector is introduced. For this, the starting point is based on
exact matching [6] that has been further investigated in [7].

With respect to querying knowledge bases in the HR domain, the commonly
investigated approach is to find the best k (with k ≥ 1) matches for a given
profile, either a CV or a job offer [2]. This constitutes what is commonly known
as top-k queries. Top-k queries have been thoroughly investigated in the field of
databases, usually in the context of the relational data model [3, 4, 9]. The study
of such queries in the context of knowledge bases has also been researched [8].

The most relevant queries in the human resources sector, are matching queries
driven either by a CV (or a set of CVs) or by a job offer (or a set of job
offers). These queries can characterized as top-k queries, skyline queries in case
of partial orders on the matching measures or a combination of these. Top-k
queries in relational databases are in general addressed by associating weights
or aggregates acting as a ranking to the part of data relevant to the user’s needs,
a potential join of the relevant relations involved and, a ranking (or sorting) of
the tuples that constitutes the expected result set. Computing all these steps at
once can be a process able to consume many resources, depending on the design
and nature of the data.

Our contribution in relation to top-k queries in relational databases and
knowledge bases takes benefits of the partial order on matching measures and
knowledge bases equipped with matching relations. The expectation is of course,
that many of the results in the relational data model can be easily adopted to this
case. In particular, the focus on a single relation, i.e. the matching, as the driver
for the querying, is expected to ease the extension. This requires to investigate
the supporting data structures. In view of the many results on efficient top-k
queries in the context of the relational data model it is expected that these results
can be largely achieved by adaptation to the case of knowledge bases, in which
data structures for the support of hierarchies can be adopted from databases.
The objective is to minimize the selection of tuples as well as eliminating the
calculation of weighting (scoring) of tuples on the query itself, by making use
of weighting on the partial order of concepts of knowledge bases by means of
matching measures.

The paper is organized as follows: In Section 2 we cover the main aspects of
our theory on profile matching introduced in a previous work [5]. The internal
physical representation of profile matching is introduced in Section 3. In Section
3.1 we introduce our approach of a relational database schema to implement top-
k queries and in Section 3.2 we show an algorithm implementing our approach
of top-k queries.

2 Preliminaries

We have presented in a previous work [5] our representation of profile matching
in the HR domain. It was shown in that work how we represent CVs and jobs
profiles in a KB as well as the syntax and the semantic of the language used to
represent the terminology of the KB. We also elaborated a matching theory to
calculate the matching measures between two given profiles (CV and job offer)
and the so called blow-up operators of a KB. We briefly refresh some of those
concepts involved in the elaboration of queries.

Concepts Ci in a TBox of a KB define a lattice (L,≤) with ⊓ and ⊔ as
operators for the meet and the join respectively, and ⊑ for the partial order of
elements of a KB, and the closure under ⊓ and ⊔ for concepts Ci,⊤,⊥. In the
following, we refer to concepts Ci in L to denote concepts Ci in a given KB.
Thus, the terms TBox and lattice are used as synonyms from now on.

Concerning the formalism for representing the knowledge, a subset of the
description logic SROIQ is used in [5]. As for the semantics, concepts are given
a set-theoretic interpretation where a concept is interpreted as a set of individuals
and roles are interpreted as sets of pairs of individuals. The interpretation domain
is arbitrary and can be infinite. Then, there is an interpretation I consisting of
a non-empty set ∆I called the interpretation domain and, an interpretation
function that associates specific concept names in a TBox to individuals of the
universe. Then, it associates every atomic concept Ci to a set ∆(Ci) ⊆ ∆I and,
to every role R a binary relation ∆(R) ⊆ ∆I ×∆I .

A filter in a lattice (L,≤) is a non-empty subset F ⊆ L such that for all
C,C′ with C ≤ C′ whenever C ∈ F holds, then also C′ ∈ F holds.

If P ⊆ I is a profile, P defines in a natural way a filter F of the lattice L of
concepts:

F = {C ∈ L|∃p ∈ P · p ∈ ∆(C)}

Therefore, for determining matching relations we can concentrate on filters
F in a lattice.

2.1 Filter-Based Matching

Let (L,≤) be a lattice, and let F ⊆ P(L) denote the set of filters in this lattice.
A relative weight measure on L is a function m : P(L) → [0, 1] satisfying

(a) m(L) = 1,
(b) m(L −A) = 1−m(A) for any A ∈ P(L),
(c) m(

⋃

i≥1

Ai) =
∑

i≥1

m(Ai) for pairwise disjoint Ai ∈ P(L).

A matching measure is a function µ : F × F → [0, 1] such that µ(F1,F2) =
m(F1 ∩ F2)/m(F2) holds for some relative weight measure m on L and any
F1,F2 ∈ F.
The matching measure µ defined in [6] uses cardinalities

µ(F1,F2) = #(F1 ∩ F2)/#F2 (1)

Thus, it is defined by the relative weight measure m on L with m(A) = #A/#L.
Let w be a weight associated to every concept C ∈ L then, a matching

measure µ is defined by weights w(C) = m({C}) ∈ [0, 1] such that

µ(F1,F2) =
∑

C∈F1∩F2

w(C) ·

(

∑

C∈F2

w(C)

)−1

(2)

Example 1. A simple lattice with four elements: L = {C1, C2, C3, C4} defines up
to five filters F = {F1,F2,F3,F4,F5}, as shown in (a) and (b) Fig. 1, respec-
tively.

C4

C1

C2
C3

(a) Lattice

F1 = {C1}

F2 = {C2, C1}

F3 = {C3, C1}

F4 = {C3, C2, C1}

F5 = {C4, C3, C2, C1}

(b) Filters

Fig. 1: A lattice, its filters and matching measures

If we give some weights to the elements of L, for instance w(C1) =
1
10 , w(C2) =

2
5 , w(C3) = 3

10 , and w(C4) = 1
2 and calculate the matching measure µ(Fi,Fj)

and µ(Fj ,Fi) (for 1 ≤ i, j ≤ 5) with the formula in (2), we obtain the result
shown in Fig. 2.

F1 F2 F3 F4 F5

F1 1 1
5

1
4

1
8

1
9

F2 1 1 1 5
8

5
9

F3 1 4
5

1 1
2

4
9

F4 1 1 1 1 8
9

F5 1 1 1 1 1

Fig. 2: Matching Measures

It is easy to note at a glance on Fig. 2 that in general, the matching measures
are not symmetric. If µ(Fg,Fr) expresses how well a given filter Fg matches a
required filter Fr, then µ(Fr,Fg) measures the excess of skills in the given filter

Fg that are not required in Fr. And clearly, µ(Fi,Fj) = µ(Fj ,Fi) = 1, when
i = j for 1 ≤ i, j ≤ 5.

Example 2. Take for instance, Fr = F3 as a required profile and two given
filters Fg1 = F3 and Fg2 = F4. They are both equally and highly qualified for
the requirements in Fr given their matching measures:

µ(Fg1 ,Fr) = 1 and µ(Fg2 ,Fr) = 1

although, if we consider the measures µ(Fr,Fg):

µ(Fr,Fg1) = 1 and µ(Fr,Fg2) =
1

2

F3 matches better than F4 as C2 is not part of the required skill set.

3 Internal Structure of Profile Matching

In a modeled selection process where there is a set of profiles P, i.e., job and
applicants profiles, defined by filters in a lattice L, we denote by ϕ the conditions
to be met by profiles (either job or applicants profiles) in order to be selected,
then Pϕ denotes the set of profiles in P satisfying ϕ and Pr ∈ P is a required

profile driving the selection by holding the conditions ϕ.
Note that, when referring to matching measures from now on, we refer on

matching measures as in to formula (2) that includes weighting on the elements
of the lattice L, as shown in Example 1.

Definition 1. For all P ∈ Pϕ and P ′ ∈ (P − Pϕ), P is selected and P ′ is not

selected if µ(P, Pr) > µ(P ′, Pr) and no subset of Pϕ satisfy this property.

In order to obtain the best-k matching profiles (either job or applicant pro-
files) we first need to query for filters representing those profiles.

Consider Fr being a filter representing the required profile Pr, a requested job
profile for instance. Then, consider l being a number of filters in F (Fg1 , . . . ,Fgl)
representing candidates profiles matching Pr in a certain degree, satisfying ϕ
such that, their matching measures are above a threshold ti ∈ [0, 1] this is,
µ(Fgx ,Fr) ≥ ti for x = 1, . . . , l.

Then, every Fgx represents a finite number j of profiles (Pg1 , . . . , Pgj), can-
didates profiles matching Pr, where µ(Pgy , Pr) ≥ ti for y = 1, . . . , j and j ≤ k.

Note that, the relation between filters in L and the number of related profiles
represented by filters is defined by a function ν : N → N where ν(x) = j

and
∑l

x=1 ν(x) = k. Then, any Fgl+1
is not selected as the matching value

µ(Fgl+1
,Fr) < ti.

As for the second part of the definition, each filter F ∈ F is uniquely deter-
mined by its minimal elements such that, we can write F = {C1, . . . Cr}. Then,
every profile represented by a filter is also uniquely determined by the elements
in F . Therefore, for any profile P

′′

in a subset of Pϕ the matching value is

µ(P
′′

, P) < ti then P
′′

does not satisfy the property.

Example 3. Assume to have a job offer profile Pa and four candidates profiles
{Pb, Pc, Pd, Pe} that meet the requirements in Pa. Let’s also assume that the five
profiles are represented by the filters in Example 1 such that:

F4 represents {Pa, Pb}
F2 represents {Pc}
F3 represents {Pd, Pe}

then, Fr = F4 and Fg = {F2,F3,F4}. If ti = 0.5, l = 3 and k = 4.

In order to obtain the best l filters satisfying ϕ, we first need to know the
minimum matching value representing l filters. Thus, we start by selecting any
ti. If less than l solutions are found, we increase ti (ti+1). If more than l solutions
are found, we decrease ti (ti−1). The search stops when the l filters satisfying
µ(Fgx ,Fr) ≥ ti for x = 1, . . . , l are found.

With the optimum ti, we query for the related k profiles where µ(Pg, Pr) ≥ ti.
This assumes to be given the matching measures between all filters in L and
ultimately, between all profiles represented by filters.

As exposed in Example 1, matching measures between filters define a matrix
(Fig 2) so do matching measures between profiles although, the number of filters
is assumed to be smaller than the number of profiles (l ≤ k). If we take for
instance profiles Pa, Pc, Pd from example 3 we have the minimum number of
profiles producing matching measures to define a matrix of profiles.

Definition 2. A Matrix M is a matrix-like structure of matching measures

between the minimum number of profiles that produce all possible measures.

Fig. 3 shows a matrix M where columns represent the required profiles Pr

and rows represent the given profiles Pg.

P1 P2 . . . Pn

P1 µ(P1, P1) µ(P1, P2) . . . µ(P1, Pn)

P2 µ(P2, P1) µ(P2, P2) . . . µ(P2, Pn)

P3 µ(P3, P1) µ(P3, P2) . . . µ(P3, Pn)

...
...

. . .
. . .

...

Pn µ(Pn, P1) µ(Pn, P2) . . . µ(Pn, Pn)

Fig. 3: Matrix M of profiles

Obtaining the k solutions in M involves refer either to one column or to one
row. The the process is analogous if we focus either on rows or columns although,
the perspective is different. While reading the measures from the columns per-
spective provides the so called fitness between profiles µ(Pg, Pr), the measures

read from the rows perspective are the inverted measure µ(Pr, Pg) denoted as
overqualification. Overqualification may be considered as emphasized in Exam-
ple 2 where profiles that equally (or almost equally) match the requirements,
maybe subject to a second ranking with respect to the inverted measure.

If we focus on columns, when querying for a particular Pr representing the re-
quired skill set, there would be finitely many profiles Pg matching Pr. Although,
we only focus on the k elements where µ(Pg, Pr) ≥ ti. Ideally, all elements in the
column are in total order according to the ≤ relation of µ(Pg, Pr). The advan-
tage in here is that when searching for any given k and ti we only need to point
to the right element in the column and search for the next consecutive k − 1
elements in descending order of matching measures.

If searching for the less overqualified, there would be finitely many Pr in every
row of the Matching Matrix when querying for a particular Pg but we only need
to point to the right ti and search for the next k− 1 elements in ascending order
of µ(Pr, Pg).

Example 4. Profiles Pa, Pc, Pd are the minimum number of profiles from Exam-
ple 3 regarding fitness

Pc Pd Pa

Pc - - 5
8

Pd - - 1
2

Pa - - 1

Fig. 4: Matching Measures

We explain next how we organize profiles in order to provide an efficient
search of these elements when querying for the best k-profile matching. We first
assume an identification label for every row and column in Matching Matrix

M, where ρi represents a number i of rows and σi represents the number i of
columns, for i > 0.

Definition 3. A profile record of a required profile Pr in column σi in M, is a

finite number of elements

(µi, n
>
i , n

=
i , n

<
i , next, prev, p)

where µi denotes the matching measures µ(Pg , Pr) for every matching profile Pg

and

n>
i denotes the number of profiles Pg in σi where µ(Pg, Pr) > µi,

n=
i denotes the number of profiles Pg in σi where µ(Pg, Pr) = µi,

n<
i denotes the number of profiles Pg in σi where µ(Pg, Pr) < µi,

next is a reference to the next matching value in σi where µ(Pg+1, Pr) ≥ µi ,

prev is a reference to the next matching value in σi where µ(Pg−1, Pr) ≤ µi and,

p is a reference to a linked-list of profiles matching Pr.

The numbers n>
i , n

=
i , n

<
i are significantly important when determining the

number of profiles (either applicants or job profiles) represented by a filter with-
out actually querying for them. It is easy to determine whether (n>

i + n=
i) ≥ k

when querying for the pair (Pg, Pr). Then, search for the next pair (Pg+1, Pr) if
that is not the case.

References Next and Prev make possible to track the following greater or
smaller matching value of profiles by following the references. Every µi contains
additionally a reference p to the related profiles (jobs or applicants) in σi column.
All the related profiles are organized in a linked-list like structure of profiles,
ordered by the smaller-than-or-equal elements of matching values.

Example 5. Consider the profiles {Pa, Pb, Pc, Pd, Pe} as in Example 3 with match-
ing measures: µ(Pb, Pa) = 1, µ(Pc, Pa) = 0.63, µ(Pd, Pa) = µ(Pe, Pa) = 0.5. Con-
sider also the graphic in Fig. 5, representing the profile records of column σi in
M corresponding to Pa

0.5

Fig. 5: Linked list of matching measures

Organizing data in a structure like M with profile records implies a fast and
efficient search of the k matching profiles where the main objective is to fetch the
corresponding columns σi and together with n>

i ,n
=
i and n<

i calculate how many
of profile records we need in order to get k profiles, then follow the linked-list
of profiles until the k elements are found. If we need k = 3 with ti ≥ 0.5 we
could get to profile record 1 in Example 5 where there are in total 4 (2 + 2+ 0)
matching profiles where:

2 profiles have matching measures ≥ 0.5,
2 profiles match Pa with = 0.5 and,
none matches Pa with measures ≤ 0.5.

then, we know we have to visit 2 profile records to get the total number of
profiles. Of course, one can claim that starting on row 3 of Example 3 is the best

approach. Therefore, an ordering on the elements of columns in M seems to be
essential.

The definition of matching records on rows of Matching Matrix M is analo-
gous to Definition 3

Definition 4. A matching record of a given profile Pg in row ρi in M, is a

finite number of elements

(µi, n
>
i , n

=
i , n

<
i , next, prev, p)

where µi denotes the matching value µ(Pr, Pg) for every matching profile Pr and

n>
i denotes the number of profiles Pr in ρi where µ(Pr , Pg) > µi,

n=
i denotes the number of profiles Pr in ρi where µ(Pr , Pg) = µi,

n<
i denotes the number of profiles Pr in ρi where µ(Pr , Pg) < µi,

next is a reference to a matching values in ρi where µ(Pr+1, Pg) ≥ µi,

prev is a reference to a matching values in ρi where µ(Pr−1, Pg) ≤ µi and,

p is a reference to a linked-list of profiles matching Pg.

The consideration regarding ordering on elements of rows in M in Definition
4 is also to be consider in order to achieve an efficient retrieval of matching
overqualified profiles for a given Pg.

The following section shows an implementation of the Matrix M and profile
records in a relational database schema. We define the database structure sup-
porting our definition of top-k queries in Section 3.1 while in Section 3.2 we show
an algorithm that implements our definition of top-k queries in profile matching
in relational databases.

3.1 Implementation of Top-K Profile Matching

Our implementation approach of top-k queries as described in Section 3 is de-
signed on a relational database schema. The schema HR shown in Fig. 6 is
designed to store and maintain filters of a given lattice L, as well as profiles
and matching measures of an instance of L for the implementation of top-k
queries. Note that for the definition of the database schema we use the notation
of the unnamed and logic programing perspective as defined in [1]. Where, under
the unnamed perspective, a tuple 〈a1, . . . , an〉 is an ordered n-tuple (n > 0) of
constants of a Cartesian product domn (where dom is the underlying set of
constants, the domain). As for the programming perspective, a relation R with
arity n is an expression of the form R(a1, . . . , an) where ai ∈ dom for i ∈ [1, n]
are the attributes of the relation.

The database schema HR is composed by eight relation names:
Filter, describes every filter in a given lattice L. If we consider the lattice L in
Example 1, Filter contains 5 tuples: 〈F1〉, 〈F2〉, 〈F3〉, 〈F4〉, 〈F5〉.
Concept describes all concepts in a Knowledge Base. An instance of Concept
based on Example 1 is 〈C1〉, 〈C2〉, 〈C3〉, 〈C4〉.
FilterComposition represents the relation between concepts and filters within a

HR = {Filter, Concept, FilterComposition, Profile, ProfileByFilters, FilterWeight,

MatchingFilters, MatchingProfiles}

where:

Filter = (FilterName)
Concept = (ConceptName)
FilterComposition = (FilterName, ConceptName)
Profile = (ProfileName, ProfileType)
ProfileByFilters = (ProfileName, FilterName)
FilterWeight = (Filtername, ProfileName, ConceptName, Weight)
MatchingFilters = (FID,RequiredFilter, GivenFilter, BMatch, EMatch, SMatch, MValue,

BOverq, EOverq, SOverq, OValue, NextMV, NextOV)
MatchingProfiles = (PID, RequiredFilter, RequiredProfile, GivenFilter, GivenProfile,

Fitness, Overq, NextF, NextO)

key constraints:

Filter(key) (FilterName)
Concept(key) (ConceptName)

FilterComposition(key) (FilterName, ConceptName)

Profile(key) (ProfileName)

ProfileByFilters(key) (ProfileName, FilterName)

FilterWeight(key) (Filtername, ProfileName, ConceptName, Weigth)

MatchingFilters(key) (GivenFilter, RequiredFilter)

MatchingProfiles(key) (PID)

and referential constraints:

FilterComposition(FilterName) ⊆Filter(FilterName)
FilterComposition(ConceptName) ⊆Concept(ConceptName)
FilterWeight(FilterName, ConceptName) ⊆FilterComposition(FilterName, ConceptName)
FilterWeight(ProfileName, FilterName) ⊆ProfileByFilter(ProfileName, FilterName)
ProfileByFilter(ProfileName) ⊆Profile(ProfileName)
ProfileByFilter(FilterName) ⊆Filter(FilterName)
MatchingFilters(RequiredFilter) ⊆Filter(FilterName)
MatchingFilters(GivenFilter) ⊆Filter(FilterName)
MatchingProfiles(RequiredProfile) ⊆Profile(ProfileName)
MatchingProfiles(GivenProfile) ⊆Profile(ProfileName)

Fig. 6: Database Schema HR

lattice. For instance, in order to specify the composition of filter F2 in Example
1, tuples 〈F2, C1〉, 〈F2, C2〉 have to be present in the relation.
In relation Profile, ProfileName identifies an instance of profile P and Profile-

Type describes either a given profile Pg or a required profile Pr.
For every filter F in L, ProfileByFilter details profiles names in a given instance
of L represented by F .
FilterWeight, represents records of the associated weights assigned to concepts
C in an instance of L, to be used in formula (2). For instance, in order to de-
scribe the weights assigned to a given profile P , being an instance of filter F3 in
Example 1, the tuples 〈F3, P, C3,

3
10 〉, 〈F3, P, C1,

1
10 〉 have to be present in the

relation.
MatchingFilters represents the minimum matching measures between profiles

as in matrix M (Definition 2) such that for two profiles, Pg and Pr ∈ P, the
attribute MValue represents the measure µ(Pg, Pr) and OValue represents the
measure µ(Pr , Pg). The attributes BMatch, EMatch and SMatch represent the
numbers µ>

i , µ
=
i , µ

<
i respectively, of the profile record as in Definition 3. And,

the attributes BOverq, EOverq, SOverq represent the numbers µ>
i , µ

=
i , µ

<
i re-

spectively, as described in Definition 4.
MatchingProfiles represents the linked-list of profiles per matching measure as
shown in Example 5 such that for two profiles, Pg and Pr in P, the attribute
Fitness represents the measure µ(Pg, Pr) while the attribute Overq represents
the measure µ(Pr, Pg). Note that MatchingProfiles intents to be a representation
of elements in Definitions 3 and 4 where the attributes Attributes NextF and
NextO are references to other tuples in the relation (to the tuple with smaller
Fitness and, to the tuple with the smaller Overq, respectively). The attribute
PID is intended as an unique identifier of tuples within the relation where NextF
and NextO reference to. We describe in detail the use of attributes NextF, NextO
and ID in the following section.

3.2 Querying the Top-k Candidate Profiles

Filters from a lattice L represent the properties of profiles via the hierarchical
dependency of concepts in L. Therefore, for every required profile Pr in P there
is a required filter Fr ∈ L representing the profile. Thus, retrieving the top-k
candidate profiles for a required filter from the database schema HR is mainly
performed by querying on relations MatchingFilters and MatchingProfiles.

For every RequiredFilter in MatchingFilters there is a number of GivenFil-

ter that satisfy the requirements with a specific matching measure. This can be
seen as the minimum number of profiles producing all possible measures as in
Definition 2. Then if we focus on column σi of M there is matching measure
for every GivenFilter satisfying the requirements (in every row of M). The at-
tribute NextMV in MatchingFilters is a reference to another tuple in the relation
defining the sequence of GivenFilter by their smaller-than-or-equal relation of
elements of MValue.

In turns, for every RequiredFilter inMatchingFilters there is a RequiredProfile
in MatchingProfiles where the attribute NextF is a reference to another tuple
in the relation (representing the linked list of profiles as in Example 5). These
references define an order on the tuples ofMatchingProfiles given by the smaller-

than-or-equal relation of elements of Fitness. Thus, if RequiredFilter is provided,
retrieving the top-k profiles out of the set Pϕ as in Definition 1 can be done
by pointing to the tuple with the greatest value of Fitness and following the
references on NextF until the k tuples are reached and µ(Pg, Pr) < ti.

The algorithm in Fig. 7 shows how to retrieve an ordered list of top-k pro-
files for a given filter in schema HR. Note that we use the notation of relational
algebra with subscripts as in [1] thus, σ, π and ⊲⊳ are the selection, projection
and natural join operators respectively. We also use numeric subscripts to de-
note relation attributes. For instance, π1(MatchingProfiles) is the projection of

Input

Required filter: Fr,
maximum number of matching profiles: k

Output

top-k matching profiles Pg1, . . . , Pgk,
matching measures µ1, . . . , µk and,
over-qualification measures o1, . . . , ok.

Begin

1 SumP := π(SUM(EMatch))

(

σ2=Fr (MatchingFilters)
)

2 IF SumP < k THEN
3 PRINT (“There are less than k solutions for filter Fr”)
4 ENDIF

5 DELETE relation Results
6 CREATE relation Results = (GivenProfile, Fitness, Overq, NextF)

7 count := 1
8 Pr := π1

(

σ2=Fr (ProfileByFilters)
)

9 MaxMV := π(MAX(MValue))

(

σ2=Fr (MatchingFilters)
)

10 GF := π(3)

(

σ(2=Fr,
7=MaxMV

)(MatchingFilters)
)

11 WHILE (count ≤ k) OR (GF = 0) DO
12 Results := π(5,6,7,8)

(

σ4=GF,
3=Pr

(MatchingProfiles)
)

13 NextP := π(4)(Results)

14 WHILE NextP <> 0 DO
15 Results := + π5,6,7,8

(

σ4=GF,
3=Pr

(MatchingProfiles) ⊲⊳
1=4

Results
)

16 NextP := π(4)(Results)
17 count := count + 1
18 END WHILE

19 GF := π(12)

(

σ3=GF (MatchingFilters)
)

20 END WHILE
21 RETURN (π1,2,3(Results))

End

Fig. 7: Retrieving the top-k profiles from HR

attribute GivenFilter of relation MatchingProfiles.

The algorithm accepts as inputs:

– the required filter Fr and,
– the number k ∈ N representing the number of profiles to be retrieved

The output is composed by:

– the k given profiles Pg1, . . . , Pgk,
– the matching measures µ1, . . . , µk and,
– the over-qualification measures denoted o1, . . . , ok.

The algorithm starts by calculating the number of profile instances satisfying
the conditions ϕ in Fr and allocating it to variable SumP. This is calculated
by adding up the values of EMatch in MatchingFilters where RequiredFilter

= Fr. EMatch, as well as BMatch and SMatch in MatchingFilters represent the
number of given profiles Pg matching a required profile Pr in MatchingProfiles,
(µ>

i , µ
=
i , µ

<
i respectively, as in Definitions 3). If SumP is less than k, it is notified

in line 3.
We make use of a temporary relation Results, deleted in line 5 and re-created

in line 6. Results is used to recursively query for the ordered list of matching
measures later in the algorithm.

The variable count where dom(count)∈ N in line 7, counts the number of
profile found in relation MatchingFilters.

In line 8, the variable Pr contains the required profile defined by the required
filter Fr. For this, we query ProfileByFilters.

Between line 11 and 20, we will literally go through every µi in the column
corresponding to Fr in matrix M, which is basically done by searching in the
linked-list structure in MatchingFilters. And, Between line 11 and 20, we get all
related profiles as shown in Example 5 until the k elements are found, which is
basically to search on the linked-list structure of MatchingProfiles.

To achieve this, GP maintains record of the GivenFilter in MatchingFilters

to query for in MatchingProfiles until, either count > k (k profiles are found) or
GP = 0 (there is no more µi elements per Fr). Also, NextP maintains record of
the next PID tuple to query for within MatchingProfiles until there is no more
elements (NextP=0) in the linked-list.

Between lines 14 and 18, a recursive search on tuples of MatchingProfiles is
performed and appended to relation Results. For this, the algorithm searches
for all tuples in the linked-list of profiles in MatchingProfiles where the value
of RequiredProfile is Pr and the GivenFilter = GF . In line 15 the algorithm
follows the references in Results by querying for the next element NextF in
relation Results that is an instance of PID in MatchingProfiles. Every queried
tuple in MatchingProfiles is appended to the tuples in Results.

In line 19, GF is recalculated in order to get the next GivenFilter to be
searched for.

In line 17, the algorithm finishes by returning the GivenProfile, Fitness and
Overq values of tuples of Results.

Note that for simplicity, we use in here SUM, MAX, MIN as the aggregate
operators from SQL.

The algorithm in Fig. 7 is intended to search for the best-k profiles matching
a required filter Fr where overqualification has not been considered there. The
reason behind it being that overqualification is to be queried the same way as
fitness so we need an analogous algorithm as in Fig. 7 where the algorithm to
retrieve the best Overq. measure in MatchingProfiles should follow the references
on NextOV in MatchingFilters and NextO in MatchingProfiles.

4 Conclusion

In this paper we presented an algorithm to address top-k queries of matching
measures that produce ranking. The approach is intended as an alternative to
the sorting and merging of large portions of data in order to produce only very
few elements as result, the best k ranked elements. For the implementation of
the algorithm we made use of linked-list data structure on top of a relational
database schema to store and maintain the ranked elements. We still have to take
into account the identification of missing requirements on applicants profiles that
are essential on the selection of the best candidates. This implies an investigation
of gap queries on grounds of matching measures that is the focus of our future
research.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2. Kaushik Chakrabarti, Michael Ortega-Binderberger, Sharad Mehrotra, and
Kriengkrai Porkaew. Evaluating refined queries in top-k retrieval systems. IEEE
Trans. Knowl. Data Eng., 16(2):256–270, 2004.

3. Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k join
queries in relational databases. VLDB J., 13(3):207–221, 2004.

4. Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput. Surv., 40(4),
2008.

5. Alejandra Lorena Paoletti, Jorge Mart́ınez Gil, and Klaus-Dieter Schewe. Extend-
ing knowledge-based profile matching in the human resources domain. In Database
and Expert Systems Applications - 26th International Conference, DEXA 2015, Va-
lencia, Spain, September 1-4, 2015, Proceedings, Part II, pages 21–35, 2015.

6. Nikolaj Popov and Tudor Jebelean. Semantic matching for job search engines: A
logical approach. Technical Report 13-02, RISC Report Series, University of Linz,
Austria, 2013.

7. Gábor Rácz, Attila Sali, and Klaus-Dieter Schewe. Semantic matching strategies
for job recruitment: A comparison of new and known approaches. In Foundations of
Information and Knowledge Systems - 9th International Symposium, FoIKS 2016,
Linz, Austria, March 7-11, 2016. Proceedings, pages 149–168, 2016.

8. Umberto Straccia and Nicolás Madrid. A top-k query answering procedure for fuzzy
logic programming. Fuzzy Sets and Systems, 205:1–29, 2012.

9. Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query evaluation with
probabilistic guarantees. In (e)Proceedings of the Thirtieth International Conference
on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004, pages
648–659, 2004.

