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Abstract. The problem of identifying the degree of semantic similar-
ity between two textual statements automatically has grown in impor-
tance in recent times. Its impact on various computer-related domains
and recent breakthroughs in neural computation has increased the op-
portunities for better solutions to be developed. This research takes the
research efforts a step further by designing and developing a novel neuro-
fuzzy approach for semantic textual similarity that uses neural networks
and fuzzy logics. The fundamental notion is to combine the remarkable
capabilities of the current neural models for working with text with the
possibilities that fuzzy logic provides for aggregating numerical informa-
tion in a tailored manner. The results of our experiments suggest that
this approach is capable of accurately determining semantic textual sim-
ilarity.
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1 Introduction

Data mining and knowledge discovery techniques have long been trying to boost
the decision-making capabilities of human experts in a wide variety of academic
disciplines and application scenarios. In addition, these techniques have greatly
facilitated the development of a new generation of computer systems. These
systems are designed to solve complex problems using expert-generated knowl-
edge rather than executing standard source code. However, this notion has been
evolving towards more effective and efficient models and offers more flexibility
in supporting the human judgment in decision-making. In this work, we look at
the field of semantic textual similarity. That is the possibility of boosting the ca-
pability of a human expert in deciding whether two pieces of textual information
could be considered similar. In this way, automatic data integration techniques
can be notably improved.
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Over the last two decades, different approaches have been put forward for
computing semantic similarity using a variety of methods and techniques [11].
In this way, there are already many solutions for automatically calculating the
semantic similarity between words, sentences, and even documents. Currently,
the solutions that can obtain the best results are those based on neural networks
such as USE [4], BERT [9] or ELMo [27]. However, there is still much room for
improvement since the development of these models is still in its infancy. Many
of the functions they implement are trivial, and it is to be expected that as more
sophisticated approaches are investigated, the results to be achieved could be
better.

For these reasons, we have focused on a novel approach that is slowly making
its way into the literature: neurofuzzy systems. Systems of this kind are built by
a clever combination of artificial neural networks and fuzzy logic. These systems
attract much attention because they can bring together the significant advan-
tages of both worlds [29]. However, its application in the domain of semantic
similarity remains unexplored.

We want to go a step further to design a new neurofuzzy approach that
might be able to determine automatically and with high accuracy the degree of
semantic similarity between pieces of textual information. To do that, we propose
to follow a concurrent fuzzy inference neural network (FINN) approach being
able to couple the state-of-the-art models from the neural side together with
the state-of-the-art from the fuzzy side. This approach is expected to achieve
highly accurate results as it brings together the computational power of neural
networks with the capability of information fusion from fuzzy logics. Thus, the
contributions of this research work can be summarized as follows:

– We propose for the first time a neurofuzzy schema for semantic similarity
computation that combines the ability of neural networks to transform pieces
of textual information into vector information suitable for processing by
automatic methods with the advantages of personalized aggregation and
decoding offered by fuzzy logics.

– We have subjected our proposal to an empirical study in which we compare
it with state-of-the-art solutions in this field. The results obtained seem to
indicate that our proposal yields promising results.

The rest of this paper is structured as follows: in section 2, we present the
state-of-the-art concerning the automatic computation of semantic similarity
when working with textual information and recent solutions based on neurofuzzy
systems to solve practical application problems. In section 3, we provide the
technical explanation on which our neurofuzzy approach is based. In section 4,
we undertake an empirical study that compares our approach with those that
make up the state-of-the-art. Finally, we highlight the lessons that can be drawn
from the present work and point out possible future lines of research.
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2 State-of-the-art

The semantic similarity field attracts much attention because it represents one
of the fundamental challenges that can advance several fields and academic dis-
ciplines [16]. The possibility that a computer can automatically determine the
degree of similarity between different pieces of textual information regardless
of their lexicography can be very relevant. This means that areas such as data
integration, question answering, or query expansion could greatly benefit from
any progress in this area.

To date, numerous solutions have been developed in this regard [24, 19, 23].
These solutions range from traditional techniques using manually compiled syn-
onym dictionaries such as Wordnet [14], to methods using the web as a large
corpus such as Normalized Google Distance [5] through the classical taxonomy-
based techniques [28] or the ones based on corpus statistics [13].

Besides, more and more solutions have been developed that are valid in a
wide range of domains of different nature. Some of these solutions are based on
the aggregation of atomic methods to benefit from many years of research and
development in semantic similarity measures [21]. Moreover, there have been
breakthroughs that have completely revolutionized the field of semantic simi-
larity. One of the most promising approaches has been word embeddings [25].
Where solutions of a neural nature have been able to reduce pieces of text to
feature vectors of a numerical nature so that they are much more suitable for
automatic processing by computers. These approximations are so robust that
they can determine the degree of similarity of cross-lingual expressions [10].

Neurofuzzy systems have begun to be used in many application domains due
to the versatility they offer. Neurofuzzy systems have the great advantage of
combining the human-like reasoning of fuzzy systems through a linguistic model
based on IF-THEN rules with the tremendous computational power to discover
patterns of neural networks. Neurofuzzy systems are considered universal ap-
proximators because of their ability to approximate any mathematical function,
which allows them to be highly qualified for problems related to automatic learn-
ing.

Concerning these neurofuzzy systems’ neural side, some neural approaches
have been recurrently used to work with text—for example, automatic transla-
tion or text auto-completion. The problem is that these models are usually not
very good at capturing long-term dependencies. For this reason, transformer ar-
chitectures have recently emerged [9]. This kind of architecture uses a particular
type of attention known as self-attention [8].

However, all these architectures of neural nature that have been presented
have only used simplistic ways of aggregation and decoding of the last neural
layer to date. The operations that can be found recurrently in the literature
are cosine similarity, manhattan distance, euclidean distance, or inner product.
This is where our contribution comes into play since we propose a fuzzy logic-
based solution that can model a much more sophisticated interaction between
the numerical feature vectors generated by the neural part.
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3 A novel neurofuzzy approach for semantic similarity

Fuzzy logic can offer computational methods that aim to formalize reasoning
methods that are considered approximate. We are here considering Mamdani
fuzzy inference [18] since it is considered an optimal method for developing
control systems governed by a set of rules very close to natural language. In
Mamdani fuzzy inference systems, the output of each rule is always a fuzzy set.
Since systems of this kind have a rule base that is very intuitive and close to
natural language, they are often used in expert systems to model the knowledge
of human experts.

The reason to use fuzzy logics is that rules can also be derived analytically
when it is impossible to count on the expert’s help, as is the case in our approach.
In our specific scenario, we use aggregation controllers. These controllers are
usually divided into several components including a database of terms such as

µS̃ (x) that states the membership of x in S̃ =
{∫ µS̃(x)

x

}
what is usually defined

as µS̃(x) ∈ [0, 1], and a non-empty set of rules. In this way, the terms associated
with the database can be used to characterize the rules.

Moreover, the input values need to be encoded according to the terms from
the controller, so that Ĩ = µ1Q (x1) + µ2Q (x2) + ... + µnQ (xn), whereby µi is
the term associated with the transformation of xi into the set Q(xi).

Last but not least, we need to define the terms on the basis of membership
functions so that: T̃ =

{(
x, µT̃ (x)

)
| x ∈ U

}
. The great advantage of this ap-

proach is that a wide range of membership functions can be defined by just using
a limited number of points which represents an advantage for us when coding
possible solutions in the form of individuals from an evolving population.

Working with Mamdani fuzzy systems [18] also means that the result of the

inference will be a set such as Õ =
{∫ µÕ(v)

v

}
. Therefore, the output might

be a real value representing the result of aggregating the input values. One of
the traditional advantages of Mandami’s models concerning other approaches,
e.g., Tagaki-Sugeno’s [30], is that they facilitate interpretability. This is because
the Mamdani inference is well suited to human input while the Tagaki-Sugeno
inference is well suited to analysis [7].

On the other hand, the neural side will use transformers that are suitable
models for translations between abstract representations. The transformer mod-
els consist of an encoder-decoder architecture. It is necessary to feed the encoder
with the input textual information. From there, the encoder learns to represent
the input information and sends this representation to the decoder. The decoder
receives the representation and generates the output information to be presented
to the user. The way of working is like this: for each attention item, the trans-
former model learns three weight matrices; the query matrix WQ, the key matrix
WK , and the value matrix WV . For each token i, the input embedding xi is mul-
tiplied with each of the three matrices to produce a query array qi = xiWQ, a
key array ki = xiWK , and a value array vi = xiWV . Attention weights are calcu-
lated using the query and key arrays in the following way: the attention weight
aij from token i to token j is the product between qi and kj . The attention
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weights are divided by the square root of the key arrays’ dimension,
√
dk, which

stabilizes gradients during training, and it is processed by a function softmax,
which normalizes the weights to sum to 1.

Figure 1 shows the mode of operation of a concurrent FINN architecture. The
input data is first processed by the neural network (i.e., transformer), which is
very good with the vectorization of the pieces of textual information into nu-
merical feature vectors. These feature vectors will correspond to the membership
functions of the fuzzy module at a later stage. The coupling of the modules of
neural nature with that of fuzzy logic nature should obtain good results once a
training phase has correctly calibrated all their parameters. This architecture is
more complex and more powerful than the more advanced neural models because
it adds the last layer that can process the results in a much more sophisticated
way.

Fig. 1: Architecture of our neurofuzzy approach. The neural and fuzzy models
are coupled together and then trained in order to be properly calibrated to solve
the scenario that we wish

The appropriate combination of the two approaches gives rise to a concurrent
FINN, which we intend to obtain good results with when trying to automatically
determine the degree of semantic similarity between two textual expressions that
are analogous but have been represented using different lexicographies. Also,
another great advantage of these systems is that they can be trained separately
or together. This allows them to benefit from great flexibility and versatility. For
example, not everyone needs to develop a neural solution from scratch because
the existing ones are of high quality and have been trained on hard-to-access
corpora.

Finally, it is worth mentioning that our learning process is guided by an
evolutionary strategy that tries to find the best parameters in the neurofuzzy
model, although trying to avoid an over-fitting situation. We have opted for the
classical solution for an elitist evolution model with a low mutation rate, which
allows automatically exploring of the solution space, although it also allows a low
rate of random jumps in search of better solutions [1]. The following pseudocode
shows the rationale behind this approach.
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Algorithm 1 Pseudo-code for the evolutionary strategy to obtain optimal FINN
model

1: procedure Calculation of the best possible FINN model
2: RandomIndividuals (population)
3: calculateFitness (population)
4: while (NOT stop condition) do
5: for (each individual)
6: parents ← selectionOfIndividuals ()
7: offspring ← binCrossOver (parents)
8: offspring ← randomMutation (offspring)
9: calculateFitness (offspring)
10: population ← updatePopulation (offspring)
11: endfor
12: endwhile
13: return Model(population)

The evolutionary strategy allows us to optimally calibrate the following pa-
rameters: the transformer model to be used, how the operations in the last layer
of the neural network will be computed, the fuzzy sets and membership functions,
the IF-THEN rules that best fit the input data, as well as the defuzzification
method.

4 Experimental Study

This section describes our strategy’s experimental setup, including the bench-
mark dataset that we have used and the evaluation criteria that we are following,
and the configuration of the considered methods. After that, we perform an ex-
haustive analysis of the different approaches considered and the empirical results
we have achieved. Finally, we offer a discussion of the results we have obtained.

4.1 Datasets and Evaluation criteria

We have used the most widely used general-purpose benchmark dataset in this
field to carry out our experiments. Our approach’s behavior concerning this
dataset will give us an idea of how our approach works. This benchmark dataset
is the so-called MC30, or Miller & Charles dataset [26] that consists of 30-word
pairs that everyone might use.

Evaluating the techniques to discover semantic similarity using correlation
coefficients can be done in two different ways. First, it is possible to use Pearson’s
correlation coefficient, which can measure the degree of correlation between the
background truth and the machine results, whereby a and b are respectively the
source and target pieces whose degree of semantic similarity is to be compared.

σ =
n
∑

aibi −
∑

ai
∑

bi√
n
∑

a2i − (
∑

ai)2
√
n
∑

b2i − (
∑

bi)2
(1)
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The second way to proceed is the so-called, Spearman Rank Correlation,
whereby the aim is to measure the relative order of the results provided by the
technique.

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2)

Being di = rg(Xi)− rg(Yi) the difference between the two ranks of each ar-
ray, and n is the size of both arrays.

The significant difference between the two correlation methods is that while
Pearson is much better at determining the total order of the dataset results,
Spearman is more suitable for determining a partial order.

4.2 Configuration

As we have already mentioned, the training phase is performed by an evolu-
tionary learning strategy. Therefore, we have had to perform a grid search to
determine which are the best parameters for that strategy. Since the search
space is really huge, we had to narrow down the search intervals. In this way,
the identified parameters of our evolutionary strategy are the following:

– Representation of genes (binary, real): real
– Population size [10, 100]: 42
– Crossover probability [0.3, 0.95]: 0.51
– Mutation probability [0.01, 0.3]: 0.09
– Stop condition: Iterate over (1,000 - 100,000): 100,000 generations

In addition, evolutionary learning techniques are non-deterministic in that
they rely on randomness components to generate initial populations and search
for model improvements through small mutation rates (9% in our case). There-
fore, the results reported are always the average of several independent runs, as
we will explain later.

It is necessary to note that the hardware used has been an Intel Core i7-8700
with CPU 3.20 GHz and 32 GB of RAM over Windows 10 Pro. Furthermore,
we rely on the implementation of Cingolani’s fuzzy engine [6] as well as the
implementations of USE [4], BERT [9], or ELMo [27] that their authors have
published initially. In that sense, training using different text corpora may indeed
yield different results. However, such a study is outside the scope of this work
and would be interesting future work. Finally, it is necessary to remark that the
average and maximum training times are reported in the following section.

4.3 Results

In this section, we show the empirical results that we have obtained. In Table 1,
it is possible to see a summary of the results we have obtained when solving the
MC30 benchmark dataset using the Pearson correlation coefficient. This means
that we are looking for the capability of the different solutions to establish a
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Approach Score p-value

Google distance [5] 0.470 8.8 · 10−3

Huang et al. [12] 0.659 7.5 · 10−5

Jiang & Conrath [13] 0.669 5.3 · 10−5

Resnik [28] 0.780 1.9 · 10−7

Leacock & Chodorow [15] 0.807 4.0 · 10−8

Lin [17] 0.810 3.0 · 10−8

Faruqui & Dyer [10] 0.817 2.0 · 10−8

Mikolov et al. [25] 0.820 2.2 · 10−8

CoTO [20] 0.850 1.0 · 10−8

FLC [22] 0.855 1.0 · 10−8

Neurofuzzy (median) 0.861 4.9 · 10−9

Neurofuzzy (maximum) 0.867 1.0 · 10−9

Table 1: Results over the MC30 dataset using Pearson Correlation

total order. Please note that the results reported for our approach are based on
ten independent executions due to the non-deterministic nature of the learning
strategy. So we report the median value and the maximum value achieved.

Table 2 shows the results obtained for Spearman’s correlation coefficient.
This means that we evaluate the capability of the existing approaches when
determining a partial order between the cases of the MC30 dataset. Once again,
we report the median value and the maximum value achieved.

Approach Score p-value

Jiang & Conrath [13] 0.588 8.8 · 10−3

Lin [17] 0.619 1.6 · 10−4

Aouicha et al. [2] 0.640 8.0 · 10−5

Resnik [28] 0.757 5.3 · 10−7

Mikolov et al. [25] 0.770 2.6 · 10−7

Leacock & Chodorow [15] 0.789 8.1 · 10−8

Bojanowski et al. [3] 0.846 1.1 · 10−9

Neurofuzzy (median) 0.851 1.0 · 10−9

Neurofuzzy (maximum) 0.868 4.6 · 10−9

FLC [22] 0.891 1.0 · 10−10

Table 2: Results over the MC30 dataset using Spearman Rank Correlation

Finally, we offer a study of the time it takes to train our neurofuzzy systems.
Figure 2 shows the training that has been performed to obtain the Pearson
correlation coefficient. As we are working with non-deterministic methods, the
results presented are equivalent to an average of ten independent runs of which
we plot the minimum (red), the median (blue) and the maximum (black).
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Fig. 2: Fitness evolution for the Pearson correlation. The red, blue, and black
plots represent the worst, median and best cases respectively

While Figure 3 shows the time taken to properly set up our approach to solve
the Spearman Rank Correlation. As in the previous case, the results we can see
in the plot are the result of ten independent runs of which we plot the minimum,
the median and the maximum values that we have achieved.
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Fig. 3: Fitness evolution for the Spearman Rank correlation. The red, blue, and
black plots represent the worst, median and best cases respectively

As it can be seen, our approach presents several significant advantages con-
cerning the works that make up the state-of-the-art. As for techniques based on
neurofuzzy hybridization, no work has yet been done in this area to the best
of our knowledge. However, our previous experience designing solutions based
on fuzzy logic led us to think that combining the human-like reasoning of fuzzy
logics with neural networks’ learning capability would yield quite good results.
Training a neurofuzzy system indeed involves a significant consumption of re-
sources in the form of time, but it is also true that once trained, the results are
pretty good. Moreover, the model can be reused. Even mature transfer learning
techniques can facilitate its application in analog-nature problems in different
scenarios.
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5 Conclusions and Future Work

We have presented a novel approach for the automatic computation of the degree
of similarity between textual information pieces. Our approach is novel because
it is the first time that a neurofuzzy system is proposed to deal with the prob-
lem. We think that a neurofuzzy system is appropriate in this situation since it
can combine the high capabilities of neural nature solutions to extract and con-
vert features associated with text expressed in natural language with the ability
of fuzzy logics to aggregate and decode in a personalized way information of
numerical nature.

The results we have obtained show that our approach can achieve results
in line with the state-of-the-art, even without being specifically trained. These
promising results rely on solutions of neural nature whose accuracy is highly
contrasted together with fuzzy logic system, which has a great capacity to ag-
gregate intermediate results and decode them into the values for which it has
been trained.

Besides, the two parts that make up our system can be trained separately.
For example, we can use a highly constrained accuracy model such as BERT
combined with a classical Mamdani inference model, which usually gives out-
standing results. In this way, our system is built based on building blocks that
give it flexibility and versatility not known so far in semantic similarity mea-
surement.

As future work, we plan to explore other approaches to assess similarity
automatically. We have worked here with monolingual semantic similarity, i.e.,
all pieces of textual information were expressed in English. However, a pending
issue is to study the problem from a cross-lingual perspective. The other pending
issue would be how to improve the interpretability of the resulting system. Due
to the black-box model that is implemented in the neural part, a solution must
be found so that people can understand this model from the beginning to the
end.

Acknowledgements

This work has been supported by the Austrian Ministry for Transport, Innova-
tion and Technology, the Federal Ministry of Science, Research and Economy,
and the State of Upper Austria in the frame of the COMET center SCCH.
By the project FR06/2020 by International Cooperation & Mobility (ICM) of
the Austrian Agency for International Cooperation in Education and Research
(OeAD-GmbH). We would also thank ‘the French Ministry of Foreign and Euro-
pean Affairs’ and ‘The French Ministry of Higher Education and Research’ which
support the Amadeus program 2020 (French-Austrian Hubert Curien Partner-
ship – PHC) Project Number 44086TD.

10



References

1. Plamen P. Angelov and Richard A. Buswell. Automatic generation of fuzzy rule-
based models from data by genetic algorithms. Inf. Sci., 150(1-2):17–31, 2003.

2. Mohamed Ben Aouicha, Mohamed Ali Hadj Taieb, and Abdelmajid Ben Hamadou.
LWCR: multi-layered wikipedia representation for computing word relatedness.
Neurocomputing, 216:816–843, 2016.

3. Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching
word vectors with subword information. Trans. Assoc. Comput. Linguistics, 5:135–
146, 2017.

4. Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian
Strope, and Ray Kurzweil. Universal sentence encoder for english. In Eduardo
Blanco and Wei Lu, editors, Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2018: System Demonstrations,
Brussels, Belgium, October 31 - November 4, 2018, pages 169–174. Association for
Computational Linguistics, 2018.
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