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Abstract Semantic similarity measurement aims to automatically compute
the degree of similarity between two textual expressions that use different
representations for naming the same concepts. However, very short textual
expressions cannot always follow the syntax of a written language and, in
general, do not provide enough information to support proper analysis. This
means that in some fields, such as the processing of landmarks and points of in-
terest, results are not entirely satisfactory. In order to overcome this situation,
we explore the idea of aggregating existing methods by means of two novel ag-
gregation operators aiming to model an appropriate interaction between the
similarity measures. As a result, we have been able to improve the results of
existing techniques when solving the GeReSiD and the SDTS, two of the most
popular benchmark datasets for dealing with geographical information.

Keywords Knowledge Engineering · Data Integration · Semantic Similarity
Measurement

1 Introduction

The computation of semantic similarity has traditionally been considered an
important method in many areas of computer research since methods of this
kind are of vital importance for successfully addressing a number of complex
problems [19]. Automatically determining a similarity score for a pair of text
expressions based on their real meaning is a problem that attracts many re-
searchers from many scientific fields. In our particular case, the automatic
assessment of the semantic resemblance of landmarks and points of interest
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(POIs), such as lake and loch, facilitates a number of practical applications
in geographic information retrieval [21], or schema and ontology integration
[16]. Therefore, automatic learning to identify the most appropriate semantic
similarity measures (ssm) can be considered as a key research challenge [38].

In recent times, the vast amount of geospatial information available on the
Web has made such as functionality as searching, and recommending land-
marks and POIs has become a major challenge for researchers from this field.
As this huge amount of information is produced to be consumed by people,
the methods and tools working with information of this kind should positively
correlate with human judgments [14].

In our particular case, it is important to note that semantic similarity mea-
surement has direct implication in many problems concerning urban systems
or natural environments. For example, location-based services offer landmarks
and POIs by analyzing previously visited places [23]. Semantic similarity is
also applied to perform data integration between different geospatial sources
[6]. In this way, the more resources of this kind become available, the higher
is the need for appropriate methods and tools being able to deal with them
[15]. In fact, many applications dealing with geographical information require
the support of some kind of semantic similarity measurement [9].

For this reason, and despite the fact that it is possible to find an important
number of works concerning semantic similarity in the literature; if we discard
all those approaches just addressing simple words, and also those works ad-
dressing sentence or paragraph similarity, none or little attention have been
paid to achieve optimal solutions for facing the problem of dealing with very
short textual expressions. In consequence, it is necessary to design robust mea-
sures to face scenarios like this, whereby the coverage of landmarks and POIs
is one of the most representative use cases. Our working hypothesis is that
by using some novel aggregation operators (a.k.a. aggregators), it is possible
to leverage the results of existing methods and achieve interesting insights to-
wards this goal. In fact, the major highlights of this work can be summarized
as follows:

– The proposal of a novel operator that is able to face the non-stochastic un-
certainty of natural language using an aggregation approach built following
the principles of fuzzy logic.

– The proposal of another aggregation operator based on artificial neural
mechanisms for the aggregation of ssm from the geospatial field. This op-
erator uses a gradient descent approach that handles the subjectivity and
imprecision associated with natural language in a proper manner.

– The evaluation of these two novel aggregators using the GeReSiD dataset
[5]. This benchmark dataset includes human judgments about 50 pairs of
terms and covers a unique set of landmarks and POIs.

– The evaluation of the two novel aggregators using a well-known dataset
generated from the Spatial Data Transfer Standard (SDTS) [36], which
is intended to easily share geographical data on a wide range of different
computer systems.
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The remainder of this work is organized in the following way: Section 2
reports the state-of-the-art on geospatial similarity measurement with a special
focus on the context of landmarks and POIs. Section 3 presents our novel
operators for the aggregation of simple ssm. Section 4 reports the empirical
evaluation of our aggregation operators and the analysis of the results that we
have achieved from their evaluation. Finally, we outline the conclusions and
future lines of research.

2 State-of-the-art

In the past, many researchers from a wide range of research fields have pro-
posed a vast amount of new ssm: n-grams, wordnet, semantic analysis, etc.
[7]. This is mainly due to its key role in many application-oriented disciplines
from the information technology fields [20]. One of the key aspects is that these
computational techniques are usually exploited for handling textual represen-
tations which enable effective representation of linguistic items at multiple
levels, from word senses to full-text .

In this context, it is very important to distinguish between semantic simi-
larity and relatedness; while two expressions that are similar have to be always
related, the opposite is not true. For example, filling station and fuel are two
expressions that are highly related, but that are far from having the same
meaning. In this work, and mainly due to our focus on aspects associated to
data integration, we deal with the semantic similarity of landmarks and POIs,
but there are also some works that have addressed the problem of relatedness
[3] since it has direct implications in a number of disciplines such as geospatial
query expansion and recommendation.

In addition, when focusing on our case study, it is possible to observe that
there are intrinsic issues associated with the geospatial information that makes
the problem different from the rest [12]; one of these issues is related to the
fact that dealing with semantic similarity is not a homogeneous problem, and
it usually involves any of these three clearly differentiated cases:

1. The first case is related to the assessment of semantic similarity for sim-
ple words, such as those collected in the Miller & Charles dataset [30]
(automobile-car, gem-jewel, and so on). In this context, there are works
proving that by using some methods (e.g. information content, path calcu-
lation, etc.) over a dictionary such as WordNet being able to automatically
assess the semantic similarity between two terms with very good results
[35].

2. The second case is related to the assessment of the semantic similarity
between sentences or paragraphs, i.e. entities that have a full structure. In
cases like these, there are also a number of solutions that try to search for
similar words in the two sentences [2]. If the methods are able to identify
a high degree of common features between them, then it is quite possible
that both sentences and paragraphs are semantically similar. For example,
the Word Mover’s Distance (WMD) computes the distance between two
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textual expressions as the cumulative sum of them minimum distance that
each term in the source textual expression has to move to the closest one
in the target textual expression [22].

3. Finally, there is another case involving very short textual expressions for
which it is not usually possible to use dictionaries (since the meaning of
words where together might alter the overall meaning of the complete ex-
pression) nor search for common features. For example, such case as public
transport station and railway platform implies that there is no dictionary,
no sentence structure nor sufficient overlapping words that can give clues
when it comes to solving the problem. As a result, methods for simple
words or sentences cannot properly tackle the problem.

However, there are similarity measures relying on distributional semantics,
i.e. those measures that extend the representation of each term with the more
likely words to appear with it. These kinds of measures have proven to be
able to successfully handle short texts [40]. These methods can handle word
combinations that do not appear in dictionaries, but can be found recurrently
in large text corpora. Our hypothesis is that we could use them when facing the
problem of using ssm for dealing with very short textual expressions, in special
with landmarks and POIs. To do that, it is possible to choose among three
major families of methods that are able to exploit distributional semantics:

– MCS methods This family of methods implements a greedy strategy that
tries to identify the largest substructure the two expression pairs to be
compared have in common [37].

– LSA methods are methods to extract and represent the meaning of words
through statistical calculations over large corpora. The rationale behind
this idea is that those contexts in which a particular word appears can
provide a series of reciprocal restrictions, which largely resemble the mean-
ing of the words [18].

– UMBC methods provide two prevailing approaches to compute semantic
similarity, based on either using of a thesaurus (e.g., WordNet ) or statistics
from a large text corpus [11].

Concerning the aggregation of different information sources leading to take
shared decisions, it is possible to find a great corpus of technical literature
mainly due to the importance of dealing with pools of heterogeneous sources
that should find a way to provide single results [34][42]. In fact, most of these
works belong to different categories: multi-expert in neural-fuzzy networks,
ensemble learning, and deep learning among others.

The work that we present here clearly belongs to the first category since
we wish to avoid the risks of using a single similarity measure in exploitation
settings. Relevant works in this context are Hsu and Chen present a method
for aggregating individual fuzzy opinions into a group fuzzy consensus opinion
is presented. To do that, authors firstly define the index of consensus of each
expert to the other experts using a similarity measure. Then, they aggregate
the experts using the index of consensus and the importance of each expert
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[13]. Kuncheva presents a method for classifier fusion for continuous-valued in-
dividual classifier outputs that mitigate the risk of using just one classifier [17],
and Medina et al. proposed to extend a similarity function for appropriately
processing vectors to calculate the membership grades of the input measures
using a fuzzy neural network [29]. However, our approach is the first attempt
to use aggregators for improving the assessment of semantic similarity in the
context of landmarks and POIs.

3 Semantic similarity in the geospatial field

A ssm can be defined as a function that maps the likeness of two textual rep-
resentations into real value in the range [0, 1]. In this way, the value 0 informs
about not overlapping features between the two textual representations to be
compared, and the value 1 means that all distinguishing features are common
[?,25]. This is mainly due to the fact semantic similarity judgment is not al-
ways right or wrong, but it obtains a certain degree of plausibility, depending
on how it reflects the human way of thinking [4].

Current approaches on semantic similarity measurement are usually fol-
lowing an approach based on the aggregation of similarity scores retrieved
from a number of different ssm, i.e. aggregation methods try to accurately ag-
gregate different viewpoints to come to a final decision [10]. As consequence,
some authors have proposed some similarity aggregation techniques that have
achieved good results in the past [?,8]. The rationale behind this approach is
very intuitive; if there are some ssm not being able to perform reasonably well
for a particular comparison, their effects on the overall performance can be
blurred by other ssm being able to provide better results [27]. Therefore, we
can define aggregators (shorter form for aggregation operators) as mathemat-
ical functions being able to reduce a set of numeric inputs into a meaningful
number reflecting a proper interaction between those inputs.

The great advantage of aggregators is that they can work with methods
that might differ on the characteristics and the data they can work with. In
this way the most widely used configurations are those covering different a
wide range of features and background resources ranging from dictionaries to
large document collections. In fact, a number of different approaches aiming
to aggregate the results of distant methods have been proposed. It is possible
to see that many of them have succeeded by overcoming the traditional prob-
lems from simple ssm [27]. In the next subsections, we explain how we have
designed our fuzzy and neural aggregators, and how these aggregators are able
to overcome the limitations of traditional methods.

3.1 Designing a fuzzy aggregator

The great advantage of fuzzy operators is that it allows assigning relevance
to sets of ssm and not only to individual measures as it happens for other
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measures such as the weighted mean. Our fuzzy operator is inspired on the
idea of ssm have to be aggregated by not considering dissident scores in case of
a common consensus can be achieved or trying to impose a compromise in case
of a common recommendation from the ssm to be aggregated is not possible.
Operators like this have shown a good performance when solving cases from
other application domains [26].

An operator like this is usually implemented by the design of three different
stages: fuzzification, reasoning, and defuzzification.

For the process of fuzzification is necessary to define the membership func-
tions, i.e. the way that the real values will be transformed into a function
that can be used to reason with. In this case, we have chosen to define the
membership function as traditional trapezoids in the form:

m(h;x1, x2, x3, x4) = max

(
min

(
h− x1

x2 − x1
, 1,

x4 − h

x4 − x3

)
, 0

)
The fuzzy reasoning is going to be implemented using rules. These rules

take a number of variables as input and produce a unique output that it is going
to be a real number between 0 and 1. This output is just the consensus from
the different input ssm (if any) or a compromise between two or more choices
stating different values. In this case, the final value needs to be calculated
by the fusion of their semantic similarity score [27]. Such an operator follows
these properties:

1. Idempotence: f(x, x, ..., x) = x
2. Neutral element: fn(x1, ..., e, ..., xn−1) = fn−1(x1, ..., xn−1)
3. Associativity: f(x1, x2, x3) = f(f(x1, x2), x3) = f(x1, f(x2, x3))
4. Symmetry: f(xσ(1), xσ(2), ..., xσ(n)) = f(x1, x2, ..., xn)
5. Non Absorbent Element: f(x1, ..., a, ..., xn) ̸= a
6. Pareto compensation: minni=1(xi) ≤ f(x1, x2, ..., xn) ≤ maxni=1(xi)

Where (1) guarantees determinism, (2) monotone extendibility, (3) and (4)
independence of the implementation, (5) avoid the possibility of veto, and (6)
an output dependent of the input.

In order to set up the parameters for the fuzzy operator, it is necessary to
study many aspects such the overlapping between the membership functions,
thresholds, etc. in order to decide whether a pair of landmarks or POIs could
be considered semantically equivalent or not [28]. This configuration can be set
up in an initial parametric study. A study of this kind consists of optimizing the
configuration in order to increase the chances of reaching our goal, which in this
case consist of replicating the behavior of experts for all the expression pairs
to be compared. In this particular scenario, we want to set up the operator so
that the comparisons might be performed with a minimum amount of errors.
It could be also optimized for maximizing the number of correct predictions,
but this might penalize the overall performance, and therefore, it is not so
interesting for our purposes.

Concerning the inverse process, i.e. getting the real number that represents
the result from the aggregation process, we need a method that can generate
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a score for representing the resulting fuzzy set. To do that, we have chosen the
Center of Gravity (CoG) method since it does not give any preference to any
membership functions. This method can be expressed as follows:

CoG =

∑b
x=a µA(χ)x∑b
x=a µA(χ)

In this case, the CoG is the center of the area of the fuzzy set (centroid),
and uses the value at which this occurs as the final aggregated score.

3.2 Designing a neural aggregator

Research on neural networks was initially inspired by the purpose of modeling
the brain and other kinds of neural systems, but as collateral effect, researchers
realized that neural networks can also be successfully applied in the comple-
tion of many computational tasks. Neural network operators are based on
the working mode of cells called neurons. In this way, a neuron is a kind of
biological artifact that has several inputs that can be activated by external
processes. Depending on the degree of activation, the neuron produces its own
results and sends them to the outputs. In addition, given output paths could
be weighted higher than other ones in order to achieve a specific goal [39].

Therefore, an artificial neural network is a set of connected artificial neu-
rons which has an input layer, a number of hidden layers and an output layer.
The information goes in one direction only, i.e. from the input layer to the
output layer. During this process, the information goes through the hidden
layer. Each node in a layer is connected to every node from the next layer.
Weights between nodes store what researchers call the knowledge. This means
that after training solved cases from the experts, the network should be able
to solve future cases without human supervision using the previously learned
knowledge.

In this context, our neural aggregation operator can be used to smartly
combine different ssm into one. In this way, the result of the soft aggregation
operator might consider (to some variable extent) all the individual values.
Therefore, we have created a neural operator, which given a number of ssm as
an input, could be able to learn how to aggregate them in order to produce a
very accurate score on the likeness of different landmarks and POIs expressed
in a textual way. To do so, we model our operator as follows:

yi = f(xi, w) = wTxi

Our task is then to find the weights that provide the best fit to past solved
cases. In order to calculate our fit, we compute the sum squared error of our
network’s predictions over our dataset in this way [31]:

E(w) =
∑
i

(f(xi,w)− yi)
2
=
∑
i

(ŷi − yi)
2
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Therefore, in order to find the line of best fit, we aim to minimize the value
E(w). As a result, we get the best combination of simple ssm that is able to
solve benchmark datasets concerning geographic information with a minimum
error. Then these values are updated using the solved cases.

In order to guide the search within this huge solution space, it is necessary
to design a technique based on gradient descent so that we can minimize the
distance from the existing function to the ideal one. To do that, it is necessary
to compute the derivative of the gradient with respect to the weight associated
to each ssm in this way:

∂

∂wj→k
E(w) =

∂

∂wj→k

∑
i

(f(xi,w)− yi)
2

=
∑
i

∂

∂wj→k
(f(xi,w)− yi)

2

=
∑
i

2 (f(xi,w)− yi)
∂

∂wj→k
f(xi,w)

It is necessary to save all the obtained information in a vector, so the the
output from our aggregation operator is given by:

∇wE(w) =

(
∂E(w)

∂w1
,
∂E(w)

∂w2
, ...,

∂E(w)

∂wn

)

=

(∑
i

2x
(1)
i f(xi,w),

∑
i

2x
(2)
i f(xi,w), ...,

∑
i

2x
(n)
i f(xi,w)

)
Since this operator is not deterministic and has a cold start based on ran-

dom values, it is not possible to guarantee the same mathematical properties
that our fuzzy operator follows. Therefore, results in this context are always
presented as an average of several executions.

4 Results

The rationale behind the evaluation is to show how the two new approaches
are able to improve the results from current methods. In this context, it is
necessary to remark that the most usual way of comparison between the scores
from novel solutions and human judgments is usually expressed as a correlation
between the two vectors of ratings [33]. This means that the goal is to obtain
the degree of likeness between novel results and human judgments. The reason
to follow this way to measure the likeness between geographic terms is to
compare the degree of correlation between an artificial and a natural solution
using the Pearson correlation coefficient [1]. Each of both solutions contains all
the similarity scores associated with each particular case from the benchmark
dataset. The final result will be between the values -1 (human ratings and
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results from the proposed solution present an opposite correlation) to 1 (human
ratings and results from the proposed solution present a perfect correlation).
Obviously, our challenge here is to get a result of 1 what means that our
approach can replicate the behavior of the experts who initially solved the
benchmark dataset.

To assess the quality of our aggregators, we have used the two existing
benchmark datasets from this field. We summarize here the experiments that
we have performed and the results that we have obtained. The rest of this sec-
tion is organized in the following way: in subsection 4.1 we solve the GeReSiD
benchmark dataset what is considered as the standard benchmark dataset for
working with landmarks and POIs, and we analyze the results that we have
obtained from these experiments. In subsection 4.2, we extend our evaluation
by performing additional experiments over the so-called SDTS benchmark
dataset, and we include an analysis of the results that we have obtained. Fi-
nally, in subsection 4.3, we discuss the major insights that can be extracted
from the overall evaluation process.

4.1 Solving GeReSiD

This GeReSiD benchmark dataset [5] has been designed to include a pool of
97 terms that have been grouped in 50 pairs. Human judgments of similarity
were collected on the different 50 pairs. Table 2 shows us these 50 pairs. These
pairs range from those that are not similar at all (nursing home & continent)
to other ones that are almost identical (motel & hotel) according to human
judgment.

expr1 expr2 human expr1 expr2 human
nursing home continent 0.0169 speed bump car park 0.3893

political boundary women’s clothes shop 0.0208 sea island 0.3914
greengrocer aqueduct 0.0310 managed forest significant tree 0.3992

interior decoration shop tomb 0.0504 swimming pool water reservoir 0.4174
water ski facility office furniture shop 0.0517 industrial land use landfill 0.4385
community center stream 0.0579 mountain hut hilltop 0.4897

city suburb antiques furniture shop 0.0717 barracks shooting range 0.5145
vending machine gate 0.0806 church historic ruins 0.5348
fashion shop swimming spot 0.0847 glacier body of water 0.5574
beauty parlor fire station 0.0943 canal dock 0.5943
football pitch corporate office 0.1086 police station prison 0.6107

panoramic viewpoint race track 0.1240 tower lighthouse 0.6168
bed and breakfast school building 0.1393 administrative office town hall 0.6209

shelter agricultural field 0.1488 historic castle city walls 0.6446
ambulance station city 0.1542 restaurant beverages shop 0.6496

arts center bureau de change 0.1612 historic battlefield monument 0.6680
supermarket surveillance camera 0.2042 art shop art gallery 0.7480
post box town 0.2097 bay body of water 0.7623
school toy shop 0.2172 stadium athletics track 0.7643

canoe spot hunting shop 0.2354 tram way subway 0.7643
office building academic bookstore 0.2686 floodplain wetland 0.7686

car store cycling facility 0.2727 basketball court volleyball facility 0.7807
heritage item valley 0.2896 public transport station railway platform 0.8115

city railway station 0.3279 theater cinema 0.8730
picnic site stream 0.3689 motel hotel 0.9037

Table 1 GeReSiD benchmark dataset contains geographic terminology including 97 unique
terms which have been grouped in 50 unique pairs
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For achieving our results, we propose to use three different families of se-
mantic similarity measures that we reviewed in Section 2: a) Maximum Com-
mon Substructure (MCS) method [37], b) Latent Semantic Analysis (LSA)
methods [18] and c) University of Maryland Baltimore County (UMBC) meth-
ods [11].

– Concerning the greedy strategy followed by the MCS method, we have
chosen the algorithm implemented by Rus et al [37].

– Concerning LSA, we have chosen the algorithm implemented by Landauer
et al [18]. We use two alternatives corpora:

– LSA1. We will use LSA with Touchstone Applied Science Associates
(TASA) corpus. This corpus has near 60,000 samples from 6,000 text-
books and other pieces of literature. It corresponds approximately to
the total amount of text that an average college student in USA has
experienced in its life.

– LSA2. We will also use LSA with the 1st-year-College Corpus. This
corpus near 12 million terms that belongs to the category of general
readings up to 1st year college in the USA.

– Concerning UMBC methods, we propose to use the three alternative meth-
ods presented by Han et al. [11]:

– Firstly, we will use UMBC1 method with the WebBase corpus. This
corpus is a dataset containing a collection of English paragraphs with
over three billion words processed from the Stanford WebBase project.

– Secondly, we will use the UMBC2 method with the English Gigaword
Corpus which is a comprehensive archive of news-wire text data that
has been acquired over several years by the Linguistic Data Consortium
(LDC) at the University of Pennsylvania.

– Finally, we will try UMBC STS. This method uses a lexical similarity
feature that combined LSA word similarity and WordNet knowledge.

Table 2 presents a summary of the results achieved by the existing meth-
ods for measuring semantic similarity concerning landmarks and POIs. First
column shows us the approach we have used. Score is the fitness each approach
has achieved when solving the GeReSiD benchmark dataset [5]. Finally, the
p-value represents the mathematical probability to find the current result if
the correlation were in fact zero. If this probability is below than 5.0 · 10−2, it
is usually assumed that the correlation is statistically significant.

Our proposed operators have been able to improve the results from exist-
ing approaches when dealing with the GeReSiD dataset. In fact, our strategies
have outperformed all cutting-edge ssm. The reason for that is, unlike exist-
ing techniques, our aggregation strategies are more appropriate for dealing
with subjectivity and imprecision that human language brings when labeling
landmarks and points of interest.
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Method Score p-value
MCS 0.21 7.1 · 10−2

LSA1 0.38 3.2 · 10−3

UMBC2 0.43 9.1 · 10−4

UMBC1 0.49 1.5 · 10−4

LSA2 0.54 2.5 · 10−6

UMBC STS 0.63 4.7 · 10−7

Fuzzy operator 0.67 5.0 · 10−8

Neural operator 0.67 5.0 · 10−8

Table 2 Summary of the results achieved by the existing methods for measuring semantic
similarity on the GeReSiD benchmark dataset. Results can be considered statistically sig-
nificant from a p-value of 5.0 · 10−2

4.1.1 Analysis of the results

Now, we are going to analyze the results from the experiments that we have
performed for the GeReSiD benchmark dataset. In this way, the figures we
can see below are the graphical representations allowing the visual inspection
of the results from the experiments that we have performed. GeReSiD bars
represent the 50 textual pairs representing landmarks and points of interest
that we have shown in Table 1. Meanwhile, the red bars represent the results
achieved by each of the methods that we are describing. Finally, the correlation
coefficient and its associated explanation are expressed in the figure captions.

In Figure 1, we can see that the MCS method has obtained a poor result
(score of 0.21) when solving the GeReSiD benchmark dataset. As we can see,
the reason is that the method generates a lot of false positives for text expres-
sions that are far from being semantically similar, and it is not particularly
good when recognizing cases of semantic similarity, i.e. it generates a lot of
false negatives.

Fig. 1 MCS method (score of 0.21) does not seem to be very suitable for solving the bench-
mark dataset. The reason is that the method generates a lot of false positives for text
expressions that are far from being semantically similar
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Figure 2 presents the results for the LSA1 method. Despite the fact this
method has been able to generate less false positives than its predecessor; a
poor score of 0.38 has been achieved in the evaluation. The reason is that it
is largely fails to recognize pairs that are semantically similar.

Fig. 2 LSA1 (score of 0.38) is able to generate less false positives than its predecessor, but
it still fails to recognize pairs that are semantically similar

Figure 3 shows us the results for the method UMBC2. This method is
able to produce less false positives than the previous methods. However, it
still generates a serious false positive when determining the semantic similar-
ity of the pair: beauty parlour/fire station. Additionally, the results are poor
when recognizing equivalent pairs, i.e. it generates many false negatives. These
mistakes largely contribute to the achievement of a score of 0.43.

Fig. 3 UMBC2 (score of 0.43) can produce less false positives than the previous methods.
However, it creates a very serious false positive when determining the semantic similarity
of the pair: beauty parlour/fire station. Moreover, the large amount of false negatives adds
even more penalization

In Figure 4, we can see that the UMBC1 method. Results are slightly better
than in previous experiments. However, the method still presents a very seri-
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ous false positive when determining the semantic similarity of the pair: beauty
parlour/fire station. Additionally, it generates false negatives for the compar-
isons of: bay/body of water, stadium/athletics track, and floodplain/wetland.
As a result, the method has achieved a score of 0.49.

Fig. 4 UMBC1 (score of 0.49) still presents a very serious false positive when determining
the semantic similarity of the pair: beauty parlour/fire station. Additionally, it generates se-
rious false negatives for: bay/body of water, stadium/athletics track and floodplain/wetland

Figure 5 shows us the results for the method LSA2. This method reaches
a decent score of 0.54. The reason for that is that it presents good results in
the sense that it is not generating any false positive, but it still needs to be
more decisive in stating that two pairs are semantically equivalent.

Fig. 5 LSA2 (score of 0.54) presents good results. In fact, it does not generate any serious
false positive, but it still needs to be more decisive in stating that two pairs are semantically
equivalent

Figure 6 shows us the results for the method UMBC STS. This method
got very decent results (score of 0.63), mainly due to the fact of generating a
very low number of false positives, and being quite successful when correctly
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determining semantic similarity. This method was the best before our approach
was proposed.

Fig. 6 UMBC STS (score of 0.63) got decent results, mainly due to the fact of generating
a very low number of false positives, and being successfully when determining semantic
similarity. This method was the best until now

In Figure 7, we can see that our fuzzy operator (score of 0.67) presents a
very good behavior. The method has successfully worked with intermediate
cases of semantic similarity. There is still, however, some place for improve-
ment. For instance, the method has not been able to hit on complex cases such
as bay/body of water or floodplain/wetland.

Fig. 7 The fuzzy operator (score of 0.67) beats the existing state-of-the-art methods. This
method can successfully work with intermediate cases of semantic similarity

Figure 8 shows us that our neural operator (score of 0.67) presents a very
good behavior too. Results are in line with those from the fuzzy operator.
However, the distribution of the hits is slightly different. The great advantage
of the neural operator is that it can replicate the upward pattern of similarity.
However, we have prevented over fitting by performing a 10 cross-fold valida-
tion, what means that it is strongly penalizing for the aggregation operator
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to adhere strictly to the data, but reflects a more behavior closer to what one
could expect in a real setting.

Fig. 8 The neural operator (score of 0.67) presents a very good behavior. The reason is that
it is not generating any false positive and it is doing a great job recognizing semantically
similar pairs

4.2 Solving SDTS

In order to complement the evaluation of our aggregators, now we are going
to use another benchmark dataset that is also well known and relevant in
the geographical information domain. This benchmark dataset was created by
Rodriguez and Egenhofer using the Spatial Data Transfer Standard (SDTS)
[36] as a base. The rationale behind it is to verify the behavior of different ssm
when working with geographical nomenclature to be shared by a wide range
of different computer platforms and systems. In contrast with GeReSiD, this
dataset contains just a limited number of geographic terms whereby all are
compared against all. Table 3 shows us the 21 pairs representing the ground
truth for this benchmark.

expr1 expr2 human expr1 expr2 human
Athletic field Ballpark 0.83 Building Road 0.10
Athletic field Building 0.17 Building Sports Arena 0.48
Athletic field Road 0.12 Building Stadium 0.30
Athletic field Sports Arena 0.49 Building Theater 0.44
Athletic field Stadium 0.70 Road Sports Arena 0.10
Athletic field Theater 0.16 Road Stadium 0.14

Ballpark Building 0.16 Road Theater 0.10
Ballpark Road 0.10 Sports Arena Stadium 0.78
Ballpark Sports Arena 0.49 Sports Arena Theater 0.58
Ballpark Stadium 0.74 Stadium Theater 0.38
Ballpark Theater 0.14

Table 3 STDS benchmark dataset contains geographic terminology on 7 unique terms
which have been grouped in 21 unique pairs
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As in the previous experiment, we are testing here the correlation between
the artificial and the natural solutions using the Pearson correlation coefficient
[1]. The methods used and their associated configuration remains the same:
MCS from [37], LSA1, and LSA2 from [18], with the exception of the UMBC
family of methods for which (as of February 2019) no data are available for
this benchmark dataset. As a consequence, we have decided to include the
classical Lin [24] and Pilehvar [32] approaches in order to have new references
for later comparison.

In this context, Table 4 presents a summary of the results achieved by the
existing methods for measuring semantic similarity concerning landmarks and
POIs using SDTS. As in the previous experiment, the first column shows us the
approach we have used. Score column represents the fitness that each semantic
similarity measure has achieved when solving SDTS, and the last column gives
us information about the statistical significance of the result obtained what
means that just in those cases where the p-value is below 5.0, the associated
results can be considered significant.

Method Score p-value
Lin 0.13 2.8 · 10−1

MCS 0.30 9.3 · 10−2

LSA1 0.58 3.0 · 10−3

Pilehvar 0.77 2.2 · 10−5

LSA2 0.81 4.3 · 10−6

Neural operator 0.83 1.6 · 10−6

Fuzzy operator 0.86 2.9 · 10−7

Table 4 Summary of the results achieved by the existing methods for measuring semantic
similarity on the SDTS benchmark dataset. Results can be considered statistically significant
from a p-value of 5.0 · 10−2

4.2.1 Analysis of the results

Once again, we provide figures to facilitate the visual inspection of the re-
sults concerning the SDTS benchmark dataset. The figures we can see below
are the graphical representations of the results from the experiments that we
have performed. SDTS bars represent the 21 textual pairs representing the
geographical terms that we have shown in Table 3. Meanwhile, the red bars
represent the individual results achieved by each of the methods considered
within this work. Finally, the correlation coefficient achieved is explained in
each corresponding caption.

In Figure 9, we can see that the Lin method (score of 0.13) presents a
very poor behavior. The reason is that the method is able to work with a
limited number of cases of semantic similarity only. In addition, the results
are not very accurate for those cases, so this means that the overall value for
the correlation is really low. Therefore, it would not be advisable to use it by
itself in a real setting.
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Fig. 9 Lin method (score of 0.13) does not seem to be very suitable for solving the bench-
mark dataset. The reason is that the method can work with a limited number of cases of
semantic similarity only

In Figure 10, we can see that the MCS method (score of 0.30) presents
a result distribution which is in line with the one obtained in the previous
experiment. The reason is similar: it generates a lot of false positives for very
short textual expressions that are far from being semantically similar, and it
does not particularly provide good results when recognizing cases of positive
semantic similarity. Therefore, it would only make sense to use it within an
aggregation strategy.

Fig. 10 MCS method (score of 0.30) does not seem to be very suitable for solving the
benchmark dataset. The reason is that the method generates a lot of false positives for text
expressions that are far from being semantically similar

In Figure 11, we can see that the results for the LSA1 method (score of
0.58). Despite the fact that this method is able to work with a limited number
of cases of semantic similarity only, it does a good work of not generating
any false positives, and it is able to produce some hits on a limited num-
ber of occasions. As a result, it is able to achieve a decent global correlation
score. However, it might be a little risky to make it operate alone in a real
environment.
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Fig. 11 LSA1 method (score of 0.58) achieves a decent score when solving the SDTS
benchmark dataset. The reason is that the method does not generate any false positives,
and it is able to produce some hits on a limited number of occasions

In Figure 12, we can see that the results for the Pilehvar method (score of
0.77). This method does very good work since the result distribution is very
balanced. Even so, it cannot achieve a higher correlation with human judgment
as it does not exactly match the value of positive cases. However, the method
could work on its own with certain guarantees that it will work well.

Fig. 12 Pilehvar method (score of 0.77) seem to be suitable for solving the SDTS benchmark
dataset. The reason is that this similarity measure generates a result distribution that is
quite balanced

In Figure 13, we can see that the results for LSA 2 (score of 0.81) which
presents a really good behavior. Just like it happened in the previous experi-
ment, the method has successfully worked fine in most cases. As a consequence,
we can affirm that this ssm is the best of those operating alone. There is still,
however, some place for improvement.

In Figure 14, we can see that our neural aggregator (score of 0.83) presents
a very good behavior. The method has successfully identified most of the cases
of semantic similarity. As in the analog experiment carried out before, we have
prevented overfitting by performing a 10 cross-fold validation. There is still,
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Fig. 13 LSA2 method (score of 0.81) seem to be very suitable for solving the SDTS bench-
mark dataset. The reason is that the method has successfully worked fine in most cases.
This ssm has been the one that has yielded the best results operating alone

however, some place for improvement. This is mainly due to the fact that the
limited number of instances to proper calibration does not allow it to achieve
the best results, i.e. when working with larger datasets, much better results
could be expected.

Fig. 14 The neural aggregator (score of 0.83) presents a very good behavior and it is able
to beat the rest of ssm. In fact, this aggregator does not generate any false positive and it
is doing fine when recognizing semantically similar pairs

In Figure 15, we can see that our fuzzy aggregator (score of 0.86) presents
the best results. This also happened in the previous experiment. It is clear
that this aggregator is greatly benefited here by the fact that the fuzzy ag-
gregation strategy requires no training and can operate on any dataset with
great reliability. In scenarios with a greater number of training instances, it is
supposed to go hand-in-hand with the neural operator.

From the experiments, it is clear that our proposed aggregation operators
have been able to beat the existing methods when solving cases of seman-
tic similarity for landmarks and POIs for both benchmark datasets. In this
context, we have achieved an improvement over existing methods.
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Fig. 15 The fuzzy operator (score of 0.86) is able to beat the existing state-of-the-art
methods. This method makes almost no mistakes, and as result, it is able to achieve a high
correlation coefficient

5 Conclusions

In this work, we have presented two novel operators for the semantic similarity
measurement of very short textual expressions, with a special interest in the
coverage of landmarks and POIs. These two operators are based on the fuzzy
and neural aggregation of semantic similarity measures respectively. The ratio-
nale behind these two novel operators is the aggregation of existing similarity
measures so that in the case some particular measures cannot perform well
for a particular scenario; their effects may be blurred by other measures that
perform much better, but without falling into the shortsighted strategy from
the existing averaging solutions.

The experiments reported in this work show that our two novel opera-
tors are able to improve the results from existing methods when solving the
GeReSiD and the STD benchmark datasets. These two datasets are the most
well-known benchmark dataset for landmarks and POIs. This means that these
two new approaches could be considered as a new improvement, and therefore,
we can conclude that it seems that fuzzy and neural aggregation operators are
appropriate for handling the vagueness induced from the subjectivity of the
natural language when labeling landmarks and POIs. As a result, we think that
these novel operators can be exploited by the research community in order to
implement innovative software solutions dealing with semantic similarity rang-
ing from systems to help people discover interesting locations in the context
of urban systems or natural environments to solutions providing accurate per-
sonalized recommendation of landmarks or the creation of social relationships
among users operating under areas of similar geographical typology.

Concerning future research, it is important to keep working for improving
the overall quality of the existing methods so that it could be possible to
recognize even more complex cases of semantic similarity. In this sense, it seems
appropriate to address aspects related to ensemble learning [41] to reduce
uncertainty in scenarios in which it is not possible to know very well what
the right result is. In situations like this, relying on several inputs is usually
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considered as fairer resolution, since none of each individual measures prevail
over the rest. It is also worth considering spatial and temporal aspects since
meaning is not something static, but has multiple shades and is able to evolve
over time. These are important research questions which have attracted none
or little attention in the literature, and therefore, additional research efforts
are needed to shed light on our understanding of semantic similarity and its
implications.
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31. J. A. Medina-Hernández, F. Gomez-Castañeda, and J. A. Moreno-Cadenas. An evolving
fuzzy neural network based on the mapping of similarities. IEEE Trans. Fuzzy Systems,
17(6):1379–1396, 2009.

32. G. Miller and W. Charles. Contextual correlates of semantic similarity. Language and
Cognitive Processes, 6(1):1–28, 1991.

33. M. T. Musavi, K. Kalantri, W. Ahmed, and K. H. Chan. A minimum error neural
network (MNN). Neural Networks, 6(3):397–407, 1993.

34. M. T. Pilehvar and R. Navigli. From senses to texts: An all-in-one graph-based approach
for measuring semantic similarity. Artif. Intell., 228:95–128, 2015.



Similarity Aggregators for Very Short Textual Expressions 23
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