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Abstract

In recent times, we have seen an explosion in the number of new solutions to address the problem of

semantic similarity. In this context, solutions of a neuronal nature seem to obtain the best results.

However, there are some problems related to their low interpretability as well as the large number

of resources needed for their training. In this work, we focus on the data-driven approach for the

design of semantic similarity controllers. The goal is to offer the human operator a set of solutions in

the form of a Pareto front that allows choosing the configuration that best suits a specific use case.

To do that, we have explored the use of multi-objective evolutionary algorithms that can help find

break-even points for the problem of accuracy versus interpretability.

Keywords: Knowledge Engineering, Fuzzy Logic Controllers, Similarity Learning, Semantic

Similarity Measurement

1. Introduction

In recent times, we have witnessed an absolute prevalence of computational solutions based on the

architectures of a neural nature when it comes to automatically solve problems related to semantic

similarity. The truth is that solutions of this kind are, without a doubt, the ones that manage,
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time and again, to overpass the state-of-the-art in a wide range of computational tasks and problems5

of both academic and business nature. However, by betting on this kind of solution, the research

community runs the risk of making chronicle some of the traditional problems associated with the use

of artificial neural networks (ANNs). Among these problems, three main ones stand out: the lack of

interpretability, the large amount of data required to carry out training correctly, and the difficulty

of transfer learning.10

The problem of lack of interpretability is because it is humanly impossible to understand a model

that is based on many hundreds or thousands of interconnected nodes. In this way, a human operator

can define the outputs that correspond to certain inputs, and the ANN will be in charge of configuring

a fairly accurate mapping function, but the human operator will not be able to obtain any clues about

what happens within that model. For that reason, the models of this kind are known as black-boxes15

due to the characteristic that leads them to hide their operation insights from users.

Another problem presented by neuronal architectures is the large number of solved cases that they

need to start giving good results. Fortunately, in some domains, there is a lot of data perfectly labeled

and prepared to serve as training to ANNs, but in many other specific domains, the amount of existing

data is not so voluminous and this kind of solution encounters problems to complete a training phase20

that might shed certain guarantees of success.

Last but not least, such solutions have to face the problem of transfer learning, i.e. how to transfer

the knowledge learned through a training process to solve another problem of analogous nature but

not completely similar. The complexity of this problem is closely related to the first point and lies in

the fact that if we are not able to understand the model, we will probably not be able to apply it in25

a similar situation in the future.

With the idea of solving these problems, we have raised the idea of using semantic similarity

controllers in the past [50]. These controllers are software artifacts that can be automatically designed

to avoid the problems we have mentioned above. The idea of the semantic similarity controllers is
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to be able to aggregate, both automatically and strategically, already existing methods for assessing30

semantic similarity. These methods must meet several characteristics, among which they must yield

good results on an individual basis and must be easily interpretable by a human operator.

By being able to design these controllers automatically following some of the existing information

fusion paradigms, we will be able to transfer desirable properties to these controllers. For example, in

our previous work, we demonstrated how it was possible to automatically design semantic similarity35

controllers based on fuzzy logics that allow: the obtaining of results quite close to the state-of-the-art,

without requiring large amounts of labeled data for training and with the possibility of transferring

the captured knowledge simply. All this was due to the fact that fuzzy logics allows the formulation

of aggregation problems through concepts and rules that are similar to natural language. In addition,

we imposed conditions to facilitate, even more, the interpretability. For example, we made strictly40

obligatory that a reduced set of concepts and rules might be used, and that these rules must be simple,

with at most two antecedents.

In such work, we use an evolutionary learning strategy to automate the design phase. We did not

influence the design of this strategy because it was outside the scope of that work. However, we now

wonder what might be the most promising strategy for the automatic and efficient design of these45

software artifacts with a special focus on the accuracy versus interpretability trade-off [7], i.e. give

the human operator the possibility to decide what kind of configuration (e.g. more interpretability

and less accuracy or vice versa) best fits a given situation. Therefore, the major contributions to the

state-of-the-art of this work are as follows.

� We have conducted a massive analysis of a large number of state-of-the-art multiobjetive evolu-50

tionary learning strategies in order to determine which one is best for building semantic similar-

ity controllers based on fuzzy logic paying special attention to model an appropriate interaction

between the predictive accuracy and its associated interpretability.

� We have achieved results that represent a new state-of-the-art in terms of the calculation of
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semantic similarity using highly interpretable strategies, without the need for large volumes of55

data for training and with the possibility of simple and efficient transfer learning.

The rest of this work is structured as follows: In section 2, we present the state-of-the-art concerning

the design of interpretable solutions for the calculation of semantic similarity. In section 3, we develop

our contribution to the state-of-the-art with special focus on explaining the need of building solutions

that can correctly handle a trade-off between accuracy and interpretability. In section 4, we report60

the results obtained after an extensive empirical evaluation of the evolutionary strategies mentioned

above. And finally, we extract the lessons learned from this work and set the guidelines for future

work.

2. State-of-the-art

The problem of automatically assessing the semantic similarity between words, sentences, text65

paragraphs, or even documents is widely assumed to be a research challenge that tries to address one

of the aspects of artificial intelligence that will allow computers to perform routine and tedious tasks.

This field has attracted a lot of attention in recent times due to its relevance to both industry and

academia. The reason for this is that having computer systems that can correctly assess the likeness

of two pieces of text might bring a window of opportunities to achieve an impact from the most basic70

research to the most advanced business models [63].

For this reason, there are numerous solutions to the problem of semantic similarity measures [43].

Traditionally, most techniques have been based on the development or refinement of natural language

techniques using some kind of manually compiled resources such as dictionaries, taxonomies, etc [30].

However, in recent times both academia and industry are turning more to neural network-based75

solutions inspired in the seminal work of Mikolov et al.[53]. For example, BERT [23] and ELMo

[56]. These neural network-based techniques require a lot of training time, but once trained, are very

accurate. The problem is their associated lack of interpretability [51], i.e. the limited capacity a
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person might have to understand why the methods work so well as well as the number of resources

required for training and their adaptation to working with new cases.80

However, without detracting from the merit of neural solutions, many professionals from the most

diverse application domains (legal, medicine, pharma, etc.) are usually not satisfied with just an

answer to their question and demand much more. In fact, they demand to understand why the model

has opted for such an output and not for another of the alternatives. This brings up one of the ghosts

that have always been associated with neural computing, i.e. its behavior is similar to that of a85

black-box, since it is possible to give it an input and obtain an output, but it is humanly impossible to

understand how the connections of thousands of neurons have worked to give rise to such an output, or

even what is the real meaning behind the feature vectors that have been obtained after subjecting the

model to the training of a neuronal nature. For example, the base configuration of BERT [23] requires

a configuration consisting of 12 layers of neurons and 12 windows of attention. Therefore, there are90

usually issues related to the interpretability of the resulting model. This is where our research comes

in. In fact, we have set out to explore one of the most popular methods in communities working on

methods to automate information fusion: fuzzy logics.

While fuzzy logics is now well-established and has a strong community behind it that has been

studying it for several decades, there is a lack of work on its application to the semantic similarity95

problem [52]. We believe that this gap should be explored since fuzzy logics allow the construction of

rule-based models, in many cases, very close to natural language [4], making them suitable candidates

to implement solutions where interpretability is a real requirement [18].

For the design of accurate and interpretable fuzzy rule-based systems, evolutionary multiobjective

optimization methods have traditionally been used. Multiobjective genetic fuzzy systems is a term100

used to describe a research topic in which evolutionary algorithms are employed to find non-dominated

fuzzy rule-based systems that are accurate and interpretable. Some of the classic works in this area

include [61], [35], [2], and [37].
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In addition to evolutionary strategies, there are other approaches that seek the intelligent genera-

tion of solution fronts. For example, an outstanding approach consists of the active learning of Pareto105

fronts [14]. This approach enables an analytical model of the Pareto front to be built whereby an

active learning strategy reduces the computational effort in generating the necessary information. The

model is learned from a set of informative training objective vectors. The training objective vectors

are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances.

Moreover, Aggarwal [1] proposes the algorithm PLEMOA to automate the decision processes through110

the generation of a vast number of solutions. PLEMOA uses pair-wise comparisons to gather informa-

tion to learn an ideal solution corresponding to a decision-maker’s preferences for different conflicting

objectives under consideration.

In the rest of this paper, we present our research around the proper trade-off between accuracy and

interpretability on semantic similarity controllers using different evolutionary strategies so that they115

can contribute to facilitate the work of human operators, reduce the number of training resources,

and facilitate the transfer learning processes. This is particularly interesting in an application domain

such as semantic similarity measurement that is currently dominated by black-box solutions.

3. On the Trade-off between Accuracy and Interpretability

Although much of the current research focuses on getting word embeddings that work best for120

a given domain, our approach is radically different. We focus on the reuse of simple but highly

interpretable techniques that already exist in the literature. Our concept consists of given a set of

existing semantic similarity measures trying to calculate a scoring function by their automatic strategic

aggregation.

The problem is that designing that scoring function is far from being trivial. Currently, there are125

many proposals to automatically assess semantic similarity [42]. Some of these proposals are based

on the exploitation of taxonomies [59], variations of the concept of web distance [16], others are based
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on the distributional assumption terms that appear in a similar context base [22], the calculation

of synonyms [45], others are based on the co-occurrence of words in the same textual corpus [31],

etc. In principle, it is very difficult to discern which approach could perform better than the others.130

This always depends on the use case and the context in which they are applied. For this reason, our

research does not presuppose any method in advance and tries to build a model that gives each one

of them a chance.

3.1. Fuzzy Logics

Fuzzy logics have been already used in many application domains in a successful way. In our135

specific scenario, we use semantic similarity controllers. These controllers are usually divided into

several components including a database of terms such as µS̃ (x) that states the membership of x in

S̃ =
{∫ µS̃(x)

x

}
what is usually defined as µS̃(x) ∈ [0, 1], and a non-empty set of rules. In this way,

the terms associated with the database can be used to characterize the rules.

Moreover, the input values need to be encoded according to the terms of the database, so that140

Ĩ = µ1Q (x1) + µ2Q (x2) + ...+ µnQ (xn), whereby µi is the term associated with the transformation

of xi into the set Q(xi).

Finally, it is necessary to define the terms on the basis of membership functions so that: T̃ ={(
x, µT̃ (x)

)
| x ∈ U

}
. Although it is possible to use many points to define those functions, in practice,

a wide range of membership functions can be defined by just making use of a limited number of points145

which represents an advantage for us when coding possible solutions in the form of individuals from

a population as we will see later.

We focus here on Mamdani fuzzy systems [48] what means that the result of the inference will be

a set such as Õ =
{∫ µÕ(v)

v

}
. Therefore, the output variable is a real value representing the result

of the process of aggregating the existing methods. The advantage of Mandami’s models in relation150

to others that are also quite popular, e.g. Tagaki-Sugeno’s [62], is that they facilitate interpretability.

This is because the Mamdani inference is well suited to human input while the Tagaki-Sugeno inference
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system is well suited to mathematically analysis [18].

3.2. Fuzzy aggregation strategies

Aggregation methods are very popular in various areas of computing and are often used in pro-155

duction environments, as they allow to blur the errors that a method makes between a set of methods

that usually work well most of the time [49]. Only in the rare case whereby all the methods might

make the same mistake at the same time, the aggregation techniques lose their effectiveness. Some

of the most common aggregation operators are the arithmetical mean, the median, and the geometric

and harmonic means. However, their aggregation strategy is usually short-sighted since it is not able160

to model adequate interaction between the input variables. This usually means that these strategies

do not lead to optimal results. Therefore, researchers tend to look for more sophisticated operators.

3.3. On the importance of the interpretability

If we did not have as a fundamental requirement, the interpretability of the solution, training an

ANN that might be capable of aggregating simple methods in terms of a training set would be the165

ideal solution to our problem. However, the capability to understand the model, which indeed is a

really important aspect in many application domains, is not the only obstacle. For example, also

finding large data sets that represent solved cases is very difficult or expensive, or the ANN model is

usually difficult to export.

It is not easy to define interpretability. For example, Magdalena develops the notion of intepretabil-170

ity by stating that a model is interpretable in human terms if the language of the model can be

translated into the language of the human interpreter [47]. While Bodenhofer and Bauer state that

interpretability means the possibility to estimate the system’s behavior by reading and understanding

the rule base [12]. Magdalena also states that interpretability is not only a matter of the seman-

tics of information, but it is also a matter of volume. For example, a large number of rules, rules175
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jointly considering many variables, or linguistic variables with large term sets, will negatively affect

interpretability.

And this is just where our research contributes since when building a predictive model in the

field of semantic similarity measurement, there are two important orthogonal features: accuracy and

interpretability, which generally can be modeled through a trade-off relationship. In our specific180

case, we want to be able to offer the human operator the possibility to choose between accuracy

and interpretability when configuring a semantic similarity controller. Accuracy is about to have a

model being able to make correct predictions, while interpretability is about capability of the model

to facilitate its human understanding. In the particular case of semantic similarity controllers, it is

necessary to remark that Mamdani rules use variables in premise and consequent, and therefore, they185

are more interpretable than Tagaki-Sugeno’s rules [62] that use functions in the consequent. Therefore,

we will exclusively refer to the Mamdani model [48].

3.4. Semantic Similarity Controllers

In this work, we focus on the training of semantic similarity controllers that allows us to aggregate

inputs of different nature. This approach is based on the idea that models which bring together a190

variety of methods are usually able to achieve better performance than the one that could be obtained

from any of the methods alone [60]. A controller of this kind is characterized following a data-driven

approach. There is always interdependency between terms and rules since the conditions and the

consequences of the rules are associated with the aforementioned terms. The great advantage of

this method is that a sufficiently trained human operator can simply observe the resulting model,195

understand how it works, and translate it into a form close to natural language.

Concerning the automatic derivation of the semantic similarity controller, it is necessary to remark

that each of the inputs corresponds to the methods to be aggregated. It is important to emphasize that

our approach is guided by a learning strategy that tries to find the best parameters, although without

falling into over-fitting [6]. At present, there are numerous approaches based on a multiobjective200
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approach being able to do that. But as this is an eminently empirical field of study, it is difficult to

discern which strategy best suits each specific scenario. For this reason, a rigorous analysis of each of

the strategies is necessary in order to determine which one behaves better in our particular context.

3.5. Multiobjetive learning

Multiobjective learning is an approach involving more than one function to be simultaneously205

learned. This kind of learning is useful in scenarios whereby decisions need to be taken in the presence

of trade-offs between more than one orthogonal objectives [27]. This is because no single solution

exists simultaneously satisfying each objective. Therefore, without the external judgment from a

human operator, all optimal solutions should be considered equally good [28]. We can express it more

formally as follows:210

min (f1(x⃗), f2(x⃗), . . . , fk(x⃗)) s.t.x⃗ ∈ X,

In the field of multiobjective learning, there does not typically exist a solution for all objective

functions at the same time. Therefore, the focus must be on solutions that cannot be improved in any

of the objectives without worsening at least another one. More formally, a solution x⃗1 ∈ X is said to

dominate another one x⃗2 ∈ X, if

fi(x⃗1) ≤ fi(x⃗2)

for all i ∈ {1, 2, . . . , k}215

fj(x⃗1) < fj(x⃗2)

for at least j ∈ {1, 2, . . . , k}
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A solution x⃗ ∈ X is called Pareto optimal if there does not exist any solution that might dominate

it. An item of the search space x is said to dominate another item y if x is not worse than y concerning

all objectives, and is strictly better than y for at least one.

The set of items of the search space that are not Pareto-dominated by any other element is called220

the Pareto front and it represents the best possible compromises to the orthogonal objectives. And it

is the way we model an appropriate trade-off between accuracy and interpretability.

Unlike classical methods, which usually try to find one optimal solution, multiobjective strategies

are the only approaches that can directly search for the whole Pareto front, allowing human operators

to choose one of the solutions depending on the subjective information that they handle as well as225

defining what levels of accuracy and interpretability are tolerable [29].

Please note that according to [36], there two ways to improve interpretability in systems of this

kind: either reduce the number of rules involved in the controller design or reduce the amount of

antecedents in each of the rules considered. As the semantic similarity controllers already consider a

maximum of two antecedents in each of the rules, for us the improvement of the interpretability will230

be given by a reduction of the set of rules.

4. Results

We present here the results of our experimental studies. To do that, we describe the experimental

setup of our strategy including the benchmark datasets used, the goals to be achieved and the base

configuration of the considered methods. After that, we perform an exhaustive analysis of the differ-235

ent multiobjetive strategies considered and the empirical results that we have been able to achieve.

Moreover, we present a comparison with existing works including both those works that pay attention

to the intepretability as well as those works that just focus on the accuracy. We also include a time

analysis of the considered methods and we conclude with the discussion of the results that we have

achieved.240
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4.1. Experimental setup

First, we explain the data set we have worked with, the objective functions that our strategy should

pursue, and finally the base configuration that we have used in our tests and that should guarantee

the repeatability of the experiments.

4.1.1. Datasets245

Our experiments are based on a dataset that is de-facto standard to work with general-purpose

oriented solutions. It is called the Miller & Charles [54] dataset. This dataset measures the likeness

between textual information from several general-purpose scenarios, i.e., terms found in numerous

situations. Therefore, it is formed by words that in principle one could expect to find in almost any

database, document, map or even website. Please observe that we are working here with the version250

that contains 30 wordpairs (MC30), as many authors use shorter versions (e.g. 28 wordpairs) since

their methods cannot work with words that are not covered in dictionaries such as Wordnet 1.

4.1.2. Goal

For the fitness function, we have two ways to guide our learning process. The Pearson Correlation

Coefficient and the Spearman Rank correlation. The Pearson Correlation Coefficient is calculated255

between two vectors. It is defined as follows:

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2

Being x the vector representing the results from the human, and y the vector from the solution

The other alternative is to use the Spearman Rank correlation which is a coefficient to measure the

degree of association between the human-generated and the machine-generated vectors. The Spearman

1https://wordnet.princeton.edu/
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Rank correlation is the appropriate goal when the results have to be compared on an ordinal scale. It260

is defined as follows:

ρ = 1− 6
∑

d2i
n(n2 − 1)

Being di = rg(Xi)− rg(Yi) the difference between the two ranks of each vectors.

The difference between the two correlation coefficients is that the first is most appropriate in those

scenarios involving an absolute scale, while the second is more suitable for scenarios involving ordinal

scales. This means that when we want to produce absolute values, then we should train the model265

with Pearson. And if we want a model to produce relative ordering, then we should train the model

using Spearman.

4.1.3. Configuration

Concerning the learning process, it is necessary to remark that in order for all experiments to be

performed under equal conditions, we have searched for the optimal number of iterations. That is, the270

number of iterations beyond which most strategies do not achieve improvements over the previously

obtained results. The result obtained is close to 10,000 iterations, so we have imposed this stopping

condition to all the evaluated strategies.

The learning process is guided by the optimization of values in the training phase. However, the

values reported are obtained by running the controller obtained by training on the data set in a blind275

manner in what is called the test phase. Almost certainly, there will be a gap between the results

of both phases, being the value reported, the one obtained by the test phase, since it has not had

access to the ground truth. Therefore, there is always certain degree of additional error associated.

Since the methods we work with are stochastic strategies, this process is repeated by performing each

experiment 10 times independently. Therefore, it must be taken into account that the reported values280

are the result of an average of 10 independent executions.
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Moreover, it is necessary to point out that all the experiments have been performed on a regular

PC holding Microsoft Windows 10 64-bit over a processor Intel Core i7-8700 at 3.20Ghz and 32 GB

of main memory.

4.2. Analysis of strategies285

As we have already mentioned, multiobjective learning aims to simultaneously learn a function that

needs to meet several contradictory objectives simultaneously. For problems of this kind, there does

not exist a single optimal solution. Therefore, in this work, our proposed approach is compared, using

the ten most representative multiobjective strategies of the state-of-the-art in the area. Although a

detailed description of how such techniques work is beyond the scope of this work, a detailed technical290

description can be found in [25] which is, in fact, the work that inspires the selection of our methods.

In our specific case, we seek to minimize the number of rules (what in practice means to increase

interpretability [3]) and at the same time maximize the correlation between human judgment and

the results of our proposal (increase accuracy). The problem is that both objectives are orthogonal

or contradictory, so we need to resort to multiobjective approaches. In addition, it is convenient to295

highlight one important issue: the semantic similarity controller acts as a guide to achieve the best

possible result on a set of training data. However, the results that we report are achieved on a blind

data set (test set) since this is the way to verify that the controller has been able to learn a correct

configuration capable of generalizing the results.

It is necessary to remark that our individuals support the possible encoding of up to 20 fuzzy300

rules. However, this is the maximum number, and the design process would rarely require such a

large number of rules as it would cause over-fitting and would be detrimental to interpretability at

the same time. The multiobjective strategies are designed to minimize the number of rules while

attempting to maximize accuracy. Experimental results show that lower number rules can lead to the

achievement of excellent accuracy values.305

Our implementation is based on the Java programming language. Moreover, we rely on the frame-
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work JFuzzyLogics [17] that is used as a virtual machine for the fitness assessment of the different

semantic similarity controllers. And last, but not least, concerning the different multiobjetive ap-

proaches, we rely on the frameworks MOEA2 and JMetal [9]. The different strategies studied following

the alphabetical order are: CellDE [24], CMAES [34], DBEA [39], GDE3[41], MOEAD/D[64], MSOPS310

[33], NSGA-II [20], NSGA-III [21], PAES [40], and SMPSO [55]. These methods have been chosen

as the most significant after a preliminary evaluation of a wide range of strategies. Thus, methods

such as PESA2 [19], SPEA [11], SMS-EMOA [10] and IBEA [57] have been discarded because they

performed worse in terms of Pareto front solutions found.

4.2.1. CellDE315

CellDE algorithm stands for Cellular Genetic Algorithm with Differential Evolution [24]. This

approach is a variation of the MOCell algorithm hybridized with differential evolution, that it is well-

known for its good results for global optimization. In fact, CellDE also obtains very good results

for a double reason: first, as mentioned, it is based on the highly efficient differential evolution, and

second, CellDE takes from other multiobjective approaches the idea of best-solution archive, that320

store non-dominated solutions. This two design features makes the algorithm to obtain very good

results when managing a wide range of multiobjective optimization problems of different domains.

As we can see in Figure 1, it is possible to get less error (which is equivalent to greater accuracy)

by having more complex models and vice versa. It can also be observed that the results of the training

phase are a little higher than those of the test phase as is logical since the test is executed over a blind325

sample. It would be at the expense of the human operator to choose the configuration that best fits

the problem to be faced.

2http://moeaframework.org/
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Figure 1: Pareto front of non-dominated solutions obtained using CellDE. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

4.2.2. CMAES

CMA-ES stands for Covariance Matrix Adaptation Evolution Strategy [34]. Evolution strategies

(ES) are stochastic, derivative-free methods for numerical optimization of non-linear or non-convex330

continuous optimization problems. The results obtained with this approach are not as good as the

results obtained with other classic MOEAs. Its design is based on two main ideas: the principle

of maximum likelihood and the record of two evolution paths, which are compared to control the

correlation between consecutive iterations and avoid local optima.
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Figure 2: Pareto front of non-dominated solutions obtained using CMAES. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

In Figure 2, a classic Pareto front can be observed, where as a more simple to interpret model is335
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obtained, less accuracy is achieved and vice versa. Also, the training and test front never converge. It

is also remarkable the disparity of accuracies obtained in relation to the Pearson correlation coefficient

and Spearman rank correlation.

4.2.3. DBEA

DBEA stands for Improved Decomposition-Based Evolutionary Algorithm. While convergence-340

first sorting has continuously shown effectiveness for handling a variety of problems, it faces challenges

to maintain well population diversity due to the overemphasis of convergence. DBEA is a general

diversity-first sorting method for multiobjective optimization [39]. In general, decomposition based

EAs perform better when applied on optimization problems involving many objectives (more than 3).

DBEA depends on 3 key factors: first, the wisely distributed reference point generation of the model,345

second, the scheme definition to simultaneously deal with convergence and diversity in the search, and

finally, the association between the solutions and the reference directions of the search strategy.
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Figure 3: Pareto front of non-dominated solutions obtained using DBEA. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

As can be seen in Figure 3, the results show a Pareto front for both correlation coefficients.

Although the results obtained for the Pearson correlation coefficient are, in general, better than those

obtained for the Spearman Rank Correlation. Moreover, the training phase yields better accuracy350

results than the training phase as is obvious.
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4.2.4. GDE3

Generalized Differential Evolution (GDE3) algorithm [41]. Differential Evolution optimizes a prob-

lem by maintaining a population of candidate solutions and creating new candidate solutions by com-

bining existing ones according to its simple formulae. Differential evolution metaheuristics are simple,355

efficient and, in general, obtain very competitive results due to the design of the evolution strategy,

which is based on a controlled differential mutation operation over the best solutions found.
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Figure 4: Pareto front of non-dominated solutions obtained using GDE3. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

From the experiments, it is possible to see that one of the most successful approaches is GDE3.

In fact, in Figure 4, it is possible to see the great results that GDE is able to achieve for the Pearson

correlation coefficient since the error is quite low. However, as we have also observed in the rest of360

the experiments, the results achieved for Pearson are better than those obtained for Spearman.

4.2.5. MOEA/D

MOEA/D stands for MultiObjective Evolutionary Algorithm with Decomposition [64]. MOEA/D

is a relatively new optimization algorithm based on the concept of decomposing the problem into

many single-objective formulations. This algorithm performs better than the classic DBEA, but as365

occurs with other decomposition based MOEAs, MOEA/D works much better with multiobjective

problems involving more than 3 conflicting objectives.
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Figure 5: Pareto front of non-dominated solutions obtained using MOEA/D. First plot represents the Pearson Corre-

lation Coefficient, second plot represents the Spearman Rank Correlation

As we can see in the Figure 5, we have obtained a Pareto front for the two cases (Pearson and

Spearman). This is due to the orthogonality between the accuracy and the number of rules needed

for the model. Of course, once again, it can be seen that the training values are slightly higher than370

the test values.

4.2.6. MSOPS

MSOPS stands for Multiple Single-Objective Pareto Sampling. Implementation of the Multiple

Single Objective Pareto Sampling (MSOPS) algorithm [33], which performs a parallel search of multi-

ple single objective optimizations. The strategy allows bounds and discontinuities of the Pareto front375

to be identified, and it works with few and many objectives.

Again, Figure 6 shows us that we have obtained the Pareto front in which it can be clearly observed

that higher complexity equals better results in both the training and test phases (and vice versa).

Again the results seem to be better for the Pearson correlation coefficient than for the Spearman Rank

Correlation.380
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Figure 6: Pareto front of non-dominated solutions obtained using MSOPS. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

4.2.7. NSGA-II

NSGA-II stands for Non-dominated Sorting Genetic Algorithm II [20]. NSGA-II simultaneously

optimizes each objective without being dominated by any other solution. It is one of the best ap-

proaches to work when the number of goals is not too high, in fact, NSGA-II is one of the most

successful MOEAs in the specific bibliography. It is the main standard in multiobjective optimiza-385

tion. The algorithm works with the core concept of dominance, i.e. solutions which are better than

others because they improve one of the objectives and they are not worse in any of the other objectives.
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Figure 7: Pareto front of non-dominated solutions obtained using NSGA-II. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

NSGA-II based solutions are generally quite good. It is true, that this strategy does not manage
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to be the best in either case, but it is no less true that it is in the top 3 of best approaches for both

cases at the same time. Something that no other strategy studied has achieved. This is because this390

strategy has proven its effectiveness when working with few simultaneous objectives, as in our case.

Figure 7 shows us the results obtained by using NSGA-II.

4.2.8. NSGA-III

NSGA-III stands for Reference-Point Based Non-dominated Sorting Genetic Algorithm [21]. Ref-

erence Directions which need to be provided when the algorithm is initialized. It is a improvement over395

its parent strategy NSGA-II, but the strategy is specially designed for many objectives optimization

problems (more than 3 or 4), so it does not work better than NSGA-II with problems involving only

2 objectives.
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Figure 8: Pareto front of non-dominated solutions obtained using NSGA-III. First plot represents the Pearson Correla-

tion Coefficient, second plot represents the Spearman Rank Correlation

In Figure 8, we can again see the generated Pareto front. NSGA-III is usually a method that works

quite well when working with many targets, but in our case, we only have two targets, so the results400

are not spectacular. In fact, they are slightly worse than those obtained with its previous version

NSGA-II which works much better for few targets.
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4.2.9. PAES

PAES stands for Pareto Archived Evolution Strategy. This method uses an adaptive grid archive

to maintain a diverse set of solutions [40]. This classic algorithm is usually surpassed by other405

multiobjective approaches, like CellDE, which takes one of the best design strength from PAES: the

archive of solutions.
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Figure 9: Pareto front of non-dominated solutions obtained using PAES. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

Figure 9 shows us the results yielded by PAES. As can be seen, the Pareto fronts obtained are not

very populated. Or at least, they are less populated than with other solutions.

4.2.10. SMPSO410

SMPSO stands for Speed-Constrained Multiobjective Particle Swarm Optimization [55]. SMPSO

is a multiobjective particle swarm optimization algorithm. These algorithms create artificial particles

and move them in the search space using some formulas based on position and velocity. Thus, the

algorithm is a multiobjective version of a swarm intelligence approach. In general, swarm intelligence

metaheuristics achieve very competitive results for a wide range of optimization problems, so it also415

obtains very good results applied to multiobjective problems.

As in the previous cases, the Pareto fronts obtained for both the Pearson and Spearman cases

can be seen. In Figure 10, we can see how the red line marks the training results while the blue line
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Figure 10: Pareto front of non-dominated solutions obtained using SMPSO. First plot represents the Pearson Correlation

Coefficient, second plot represents the Spearman Rank Correlation

corresponds to the test results. As can be seen, the error (which is equivalent to the accuracy) is

higher when there are fewer rules (more interpretability) and vice versa.420

4.3. Comparison with existing works

Now we are going to proceed to compare the best solutions obtained using the multiobjective

learning strategy. Since our proposal is the first to study the trade-off between accuracy and inter-

pretability in the field of semantic similarity, we cannot directly compare it with any other proposal.

For this reason, we will first compare the results with other techniques that also give importance to425

interpretability. And secondly, we compare with the wide spectrum of existing methods for automatic

calculation of semantic similarity.

4.3.1. Comparison with interpretable methods

The first comparison we wish to make is with existing proposals that focus on interpretability.

These approaches are mainly based on fuzzy logic or symbolic regression methods as mentioned in430

[51]. Figure 11 shows the boxplots corresponding to the results. In the first study, we have focused on

the performance of the best approximations guided towards the optimization of the Pearson correlation

coefficient.
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Figure 11: Results of the interpretable approaches for the calculation of the Pearson Correlation Coefficient over

the MC30 benchmark dataset. SR = Symbolic Regression, S2 = Symbolic Regression with optimization of the Operator

Precedence, CT = Consensus or Trade-Off, FC = Fuzzy Logic Controller, G3 = GDE3, CS = CMAES, N2 = NSGA-II,

DB = DBEA, and N3 = NSGA-III

In Figure 12, we can see the results obtained by the classical techniques in the form of a boxplot.

The methods that we can see are those that try to optimize the interpretability of the learned models435

plus our five best approximations. As it can be seen, although the variance is high, our approaches

are able to obtain higher median results, being CellDE, SMPSO, and NSGA-II the ones capable

of achieving the best median results, which can be explained because the strategies based on the

differential evolution approach, the swarm intelligence methods and the GA based on the strong

concept of dominance are very reliable and highly efficient strategies which provide very good results440

in most of the multiobjective optimization problems. Moreover, the amount of fuzzy rules they need

does not seem excessively high.

4.3.2. Comparison with state-of-the-art

Despite the fact that accuracy and interpretability are antagonistic goals [5], it must be taken

into account that accuracy is still an important factor because there is no point in having a highly445

interpretable solution that gives bad results. We show Table 1 whereby we present the five best results

we have obtained from our empirical study for the Pearson Correlation Coefficient in comparison with
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Figure 12: Results of the interpretable approaches for the calculation of Spearman Rank Correlation over the Miller

& Charles dataset. SR = Symbolic Regression, S2 = Symbolic Regression with optimization of the Operator Precedence,

CT = Consensus or Trade-Off, FC = Fuzzy Logic Controller, CD = CellDE, SM = SMPSO, N2 = NSGA-II, DB =

DBEA, N3 = NSGA-III

the best existing approaches for solving the MC30. Although the results are dependent on how the

model is trained, we can observe that some configurations are capable of obtaining results above those

obtained by classical methods. Since we are working with nondeterministic solutions, we refer to the450

median value.

In Table 2, we show the five best results we have obtained when solving the MC30 dataset bench-

mark using Spearman Rank Correlation. In fact, we report the state-of-the-art plus the five best

results achieved following our approach. As it is possible to see, some of the configurations are ca-

pable of obtaining results above those obtained by classic methods. However, there is more diversity455

than in the previous case. In addition, the amount of fuzzy rules required to obtain these results is

not too high.

As a result of our experimental study, it is possible to observe that our approach is able to place

different configurations among the best solutions in relation to the MC30 benchmark dataset. However,

the solutions are, in general, better for the Pearson correlation coefficient than for the Spearman Rank460

Correlation. This is because these strategies seem to work better with absolute similarity values than

with relative values.
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Algorithm Score p-value

Google distance [16] 0.470 8.8 · 10−3

Huang et al. [32] 0.659 7.5 · 10−5

Jiang & Conrath [38] 0.669 5.3 · 10−5

Resnik [59] 0.780 1.9 · 10−7

Leacock & Chodorow [44] 0.807 4.0 · 10−8

Lin [46] 0.810 3.0 · 10−8

Faruqui & Dyer [26] 0.817 2.0 · 10−8

Mikolov et al. [53] 0.820 2.2 · 10−8

CoTO [49] 0.850 1.0 · 10−8

FLC [50] 0.855 1.0 · 10−8

NSGA-III, 7 rules 0.863 1.0 · 10−8

DBEA, 4 rules 0.867 8.5 · 10−9

NSGA-II, 8 rules 0.873 3.5 · 10−9

CMAES, 14 rules 0.886 3.2 · 10−9

GDE3, 12 rules 0.891 1.1 · 10−9

Table 1: Results for the Pearson Correlation Coefficient achieved by existing methods over the MC30 dataset

Algorithm Score p-value

Jiang & Conrath [38] 0.588 4.0 · 10−4

Lin [46] 0.619 1.6 · 10−4

Aouicha et al. [8] 0.640 8.0 · 10−5

Resnik [58] 0.757 5.3 · 10−7

Mikolov et al. [53] 0.770 2.6 · 10−7

Leacock & Chodorow [44] 0.789 8.1 · 10−8

NSGA-III, 8 rules 0.793 2.1 · 10−14

DBEA, 5 rules 0.797 2.1 · 10−14

NSGA-II, 8 rules 0.812 1.1 · 10−14

SMPSO, 10 rules 0.817 1.9 · 10−8

Bojanowski et al. [13] 0.846 6.3 · 10−9

Zhao et al. [65] 0.857 1.4 · 10−9

CellDE, 6 rules 0.864 1.1 · 10−10

FLC [50] 0.891 8.3 · 10−12

Table 2: Results for the Spearman Rank Correlation achieved by existing methods over the MC30 dataset
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Finally, it is also interesting to note that although it is true that the number of fuzzy rules needed

to obtain these results is not very low, it is not excessive either. Therefore, a well-trained human

operator should not have major problems understanding the model.465

4.4. Time analysis

Last but not least, it is necessary to study the time required to obtain the Pareto fronts of the

solutions we have seen. In Figure 13, we show the average execution time for each of the multiobjective

strategies considered. These times represent, once again, the average time resulting from a total of 10

independent runs of each of the strategies.470
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Figure 13: Average execution time of the multiobjective strategies considered when solving the MC30 benchmark dataset
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As can be seen, the MOEA/D technique is the fastest of all. However, this technique fails to place

its results among the state-of-the-art. Techniques such as GDE3 or NSGA-II, which show much better

results, require longer execution times to obtain the respective Pareto fronts. It is up to the human

operator to decide whether to settle for results obtained more quickly, or to wait a little longer and

obtain a better median accuracy and interpretability.475

4.5. Discussion

We have seen that semantic similarity controllers are systems being able to analyze semantic

similarity values and produce a meaningful score through a complex yet human-understandable ag-

gregation strategy. The high interpretability levels that can be achieved using semantic similarity

controllers can represent the aggregation strategy through rules that have an easy translation into the480

human language. Moreover, this kind of controller can approximate any nonlinear function since it

has the behavior of a universal approximator [15] so it must be able to model any kind of semantic

correspondence relationship.

However, when designing automatic controllers, there is a risk of obtaining models with many rules

that are very difficult to interpret. Although the accuracy that could be achieved might be good, if a485

human operator cannot understand the mode of operation, it would not be helpful in many cases. The

advantage of multiobjective techniques is that they allow an automatic design in which the decision

about the final configuration falls on the human operator. In some cases, the human operator may

prefer greater accuracy, while it might be preferred to have better interpretability in other cases. And

this is precisely where our proposal contributes.490

From our empirical study, it can be observed that there is variety in the results obtained. For

example, GDE3 achieved the best results when studying the Pearson correlation, and CellDE was the

best when studying the Spearman Rank. However, we do not want it to go unnoticed that NSGA-II is

one of the most reliable algorithms in this context since it has always been among the best methods in

all the studied cases. This is because the methods based on the notion of dominance are very reliable495
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and can implement highly efficient strategies, which provide excellent results in most multiobjective

learning scenarios. Concerning execution times, there is also some variability. But because the training

phase only has to be performed once, since the learned model will be put into operation, the different

times obtained are not significant enough to make a big difference.

In summary, we have seen how our approach can facilitate decision-making to human operators in500

semantic similarity measurement. Even in the case that ANN can achieve high levels of accuracy. Our

approach is better at interpretability of the resulting model, reduce the number of training resources,

and facilitate the transfer learning processes. However, it is necessary to analyze various strategies to

determine the optimal one for the chosen scenario. If it not possible to count on the required time

or means, it should always be possible to rely on a reasonably reliable method such as NSGA-II. In505

addition, and as a general rule, these lessons learned could be of particular interest in a wide range of

application domains that are currently dominated by black-box solutions.

5. Conclusions

In a time where big data and data analysis are important players in many application scenarios,

the need for people to trust the data-driven systems they use for their daily operations is crucial.510

However, in recent times, the field of semantic similarity is involved in a race to improve accuracy

over and over again. This issue has caused systems to pay little attention to their interpretability.

To overcome this problem, we have presented a novel approach for establishing a proper trade-

off between accuracy and interpretability when setting up novel semantic similarity controllers. The

rationale behind our proposal is based on the strategic aggregation of simple semantic similarity515

measures using a multiobjective learning approach. Such a multiobjective approach is necessary since

we are trying to model proper interactions between orthogonal goals. Our proposal overcomes the

traditional problems associated with the neural solutions that are often characterized by the growing

presence of models being accurate but incomprehensible, the excessive consumption of resources for
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their training, and their inability to extrapolate the knowledge learned.520

We have studied the behavior of multiobjective approaches considered to be state-of-the-art. Our

results show how it is possible to find a front of solutions where the human operator can define the

tolerance thresholds. Our results are promising because we have been able to achieve fairly good

accuracy values with semantic similarity controllers with high degrees of interpretability. Further-

more, the model does not require large amounts of data for training, and its ease of understanding525

facilitates its application in analogous domains. Therefore, our results could be of particular relevance

in environments where a few hundredths of additional accuracy does not compensate for the lack of

interpretability of the models needed.

As future work, it would be desirable to compare various families of solutions for designing the

semantic similarity controllers. For example, it could be of great interest to compare the Active530

Learning-based solutions [14] or the pair-wise methods [1] with the family of evolutionary algorithms

to compare their performance in implementing systems for automatic assessment of semantic similarity.
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Agirre, E. (2019). A reproducible survey on word embeddings and ontology-based methods680

for word similarity: Linear combinations outperform the state of the art. Eng. Appl. Artif.

36

https://doi.org/10.1007/978-3-662-43505-2_77
http://dx.doi.org/10.1007/978-3-662-43505-2_77
http://dx.doi.org/10.1007/978-3-662-43505-2_77
http://dx.doi.org/10.1007/978-3-662-43505-2_77
https://doi.org/10.1007/978-3-319-45823-6_92
http://dx.doi.org/10.1007/978-3-319-45823-6_92
http://dx.doi.org/10.1007/978-3-319-45823-6_92
http://dx.doi.org/10.1007/978-3-319-45823-6_92
https://doi.org/10.1162/106365600568167
https://doi.org/10.1162/106365600568167
https://doi.org/10.1162/106365600568167
http://dx.doi.org/10.1162/106365600568167
https://doi.org/10.1016/j.is.2017.02.002
https://doi.org/10.1016/j.is.2017.02.002
https://doi.org/10.1016/j.is.2017.02.002
http://dx.doi.org/10.1016/j.is.2017.02.002


Intell., 85 , 645–665. URL: https://doi.org/10.1016/j.engappai.2019.07.010. doi:10.1016/j.

engappai.2019.07.010.

[44] Leacock, C., & Chodorow, M. (1998). Combining local context and wordnet similarity for word

sense identification. WordNet: An electronic lexical database, 49 , 265–283.685

[45] Li, Y., Bandar, Z., & McLean, D. (2003). An approach for measuring semantic similarity between

words using multiple information sources. IEEE Trans. Knowl. Data Eng., 15 , 871–882. URL:

https://doi.org/10.1109/TKDE.2003.1209005. doi:10.1109/TKDE.2003.1209005.

[46] Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of the Fifteenth

International Conference on Machine Learning (ICML 1998), Madison, Wisconsin, USA, July690

24-27, 1998 (pp. 296–304).

[47] Magdalena, L. (2020). Fuzzy systems interpretability: What, why and how. In Fuzzy Ap-

proaches for Soft Computing and Approximate Reasoning: Theories and Applications (pp. 111–

122). Springer.

[48] Mamdani, E. H., & Assilian, S. (1999). An experiment in linguistic synthesis with a fuzzy logic695

controller. Int. J. Hum.-Comput. Stud., 51 , 135–147. doi:10.1006/ijhc.1973.0303.

[49] Martinez-Gil, J., Buchgeher, G., Gabauer, D., Freudenthaler, B., Filipiak, D., & Fensel, A.

(2022). Root cause analysis in the industrial domain using knowledge graphs: a case study on

power transformers. Procedia Computer Science, 200 , 944–953.
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[51] Martinez-Gil, J., & Chaves-González, J. M. (2020). A novel method based on symbolic regression

for interpretable semantic similarity measurement. Expert Syst. Appl., 160 , 113663. URL: https:

//doi.org/10.1016/j.eswa.2020.113663. doi:10.1016/j.eswa.2020.113663.705

37

https://doi.org/10.1016/j.engappai.2019.07.010
http://dx.doi.org/10.1016/j.engappai.2019.07.010
http://dx.doi.org/10.1016/j.engappai.2019.07.010
http://dx.doi.org/10.1016/j.engappai.2019.07.010
https://doi.org/10.1109/TKDE.2003.1209005
http://dx.doi.org/10.1109/TKDE.2003.1209005
http://dx.doi.org/10.1006/ijhc.1973.0303
https://doi.org/10.1016/j.eswa.2019.04.046
https://doi.org/10.1016/j.eswa.2019.04.046
https://doi.org/10.1016/j.eswa.2019.04.046
http://dx.doi.org/10.1016/j.eswa.2019.04.046
https://doi.org/10.1016/j.eswa.2020.113663
https://doi.org/10.1016/j.eswa.2020.113663
https://doi.org/10.1016/j.eswa.2020.113663
http://dx.doi.org/10.1016/j.eswa.2020.113663
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